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Abstract
Deterministic ‘thermostats’ are mathematical tools used to model
nonequilibrium steady states of fluids. The resulting dynamical systems
correctly represent the transport properties of these fluids and are easily
simulated on modern computers. More recently, the connection between such
thermostats and entropy production has been exploited in the development of
nonequilibrium fluid theories. The purpose and limitations of deterministic
thermostats are discussed in the context of irreversible thermodynamics and
the development of theories of nonequilibrium phenomena. We draw parallels
between the development of such nonequilibrium theories and the development
of notions of ergodicity in equilibrium theories.

PACS numbers: 02.70.Ns, 05.40.−a, 05.45.−a, 05.70.Ln, 45.50.−j

Abbreviations

EMD equilibrium molecular dynamics
FR fluctuation relation
IK isokinetic (i.e. with constant kinetic energy; thermostatted)
IE isoenergetic (i.e. with constant internal energy; ergostatted)
LTE local thermodynamic equilibrium
MC Monte Carlo
MD molecular dynamics
NEMD non-equilibrium molecular dynamics
ODE ordinary differential equation
SLLOD (not an acronym) it denotes one NEMD algorithm for Couette flows
�-FR fluctuation relation for the phase space expansion rate �

�-FR fluctuation relation for the dissipation function �
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1. Introduction

Statistical mechanics is a powerful framework for understanding equilibrium thermodynamics,
notwithstanding the deep mathematical questions that it poses. These questions can arise from
quite modest observations of real-life thermodynamic systems. For example, the behaviour of
such systems must be independent of their microscopic initial conditions, since in reality we
cannot know what those initial conditions are. The challenge is to turn the physical notion into
an appropriate mathematical one: for this example, the effort has a well-documented history
(see e.g. [1–3]), leading in the present day to the thorny issue of ergodicity. Ergodicity is
a strong condition, requiring the time average of all integrable functions to be independent
of initial conditions and equal to the function’s phase average over a probability distribution
whose existence is guaranteed. In reality, it is a stronger condition than is warranted by
the physical observation, which is limited to only a handful of thermodynamic properties
(even though it could hold for many more). It is also a condition that is notoriously difficult
to prove—indeed, it is known not to hold in many systems whose behaviour is certainly
thermodynamic. So while ergodicity is a mathematically rigorous notion, its connection with
the physical phenomenon that motivates it is complicated.

An alternative to the ergodic approach was championed by Khinchin. Recognizing the
limited class of functions for which independence from initial conditions was really motivated,
Khinchin demonstrated that an ergodic-like relation held for such a function if and only if
there was a sufficiently fast decay in its auto-correlation function. This is a much weaker
result, but a more natural one from the physical viewpoint: not least because the existence
of auto-correlation integrals is a requirement for linear and nonlinear response theories. This
approach identifies an important requirement that relevant physical properties must (and do)
satisfy, i.e. for theory to match reality. But Khinchin’s approach does not specifically prescribe
the entire universe of functions and systems for which one can expect such convenient physical
behaviour—and this turns out to be a very difficult problem mathematically.

While both approaches provide powerful insights into the behaviour of the systems under
examination, neither can fully satisfy both the physical and mathematical aspects of the
discourse. The first approach invokes some heavy mathematical artillery, but does not
explain why non-ergodic physical systems nevertheless display thermodynamic (‘ergodic-
like’) behaviour. Worse still, the mathematical property that seemingly is required for
thermodynamic behaviour is that of mixing: a property that implies a rapid decay of
correlations, and is mathematically even stronger than ‘mere’ ergodicity. The second approach
invokes known properties of physical systems, but only specifies a condition on the range of
systems and properties to which the result applies (and not the range itself).

An equivalent theoretical framework for nonequilibrium systems has remained elusive. In
recent years, observations of computer simulations of nonequilibrium systems led to the first
of various fluctuation relations (FRs) in this vein. These FRs relate the nature of fluctuations
forward and backward in time for nonequilibrium systems. Interestingly, a similar vexed
dichotomy between physically and mathematically motivated approaches appears to have
emerged from the efforts to provide a theoretical framework for the FRs. Beyond this point,
the bridge between the mathematical and physical aspects of these theories has a further
complication—the nonequilibrium requirement of entropy production.

The Hamiltonian formalism of classical mechanics provides suitable dynamical equations
for equilibrium systems: how does one change this dynamics to incorporate the effects of
entropy production? Fortunately, this question has already been addressed in the development
of computer simulation algorithms for nonequilibrium systems. This approach augments
the Hamiltonian equations of motion with fictitious driving forces used to represent the
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thermodynamic forces driving the system away from equilibrium. Such forces introduce
energy that must be dissipated if nonequilibrium steady states are to be obtained: one
therefore introduces further terms, collectively called a thermostat, whose original application
was to generate constant-temperature (as opposed to constant-energy) equilibrium ensembles.
For nonequilibrium simulations, the thermostat dissipates the energy introduced by non-
equilibrium driving forces, and therefore reflects the entropy they produce. Thermostats
therefore allow a mathematical representation of the entropy production, and play a central
role in the description of the dynamics at the heart of the FRs.

The point of departure for this review is an overview of the ergodic question, in anticipation
of the analogous issues that emerge for the nonequilibrium FRs. We then present a review
of thermostats, with particular attention to how they have developed from a simulation tool
into a more formal mechanism for representing nonequilibrium phenomena. We examine the
connection between the mathematics of the dynamical representation and the physical notions
of entropy, which is fundamental to theories of nonequilibrium systems such as the FRs. From
here, we examine the theories of nonequilibrium fluctuations, highlighting how the strengths
and weaknesses of the various approaches bear a striking resemblance to those regarding the
ergodic question, before drawing conclusions from this perspective.

2. The ergodic question

The goal of statistical mechanics is to understand the macroscopic properties of physical
systems from the dynamics of their microscopic constituents, by means of suitable averaging
procedures. For instance, consider a system comprising N classical particles in d dimensions,
and let its dynamics be described by

�̇ = G(�); � = (q, p) ∈ M ⊂ R
2dN , (1)

where M is the phase space, and the vector field G is determined by the forces acting on the
system and by the particles’ interactions. Denote by St�, t ∈ R, the solution of equation (1)
with the initial condition �. The macroscopic quantity associated with an observable, i.e. with
a function of phase O : M → R, is defined by

Ō(�) = lim
t→∞

1

t

∫ t

0
O(Ss�) ds. (2)

This reflects the fact that macroscopic observations occur on time scales which are long
compared to the time scales of the microscopic dynamics (equation (1)), and that an observation
amounts to a time average of the chosen observable O. The function space F(M) in which
the limit (equation (2)) is required to exist is called the space of observables.

Equation (2) suffers from various difficulties of a practical nature. In the first place,
computing the limit may not be a trivial task at all, because of the many degrees of
freedom involved. Furthermore, equation (2) is not particularly suitable for further theoretical
derivations, given its highly implicit form.

For systems in (or evolving towards) equilibrium3, the problem is commonly solved by
assuming that the system is ergodic, i.e. that

Ō(�) = 1

μ(M)

∫
M

O(y) dμ(y) = 〈O〉μ (3)

for a properly chosen probability measure μ on M, and for μ, almost all � ∈ M. In principle,
ergodic theory should identify the dynamics verifying equation (3), and the corresponding

3 A physical system is in an equilibrium state if all currents—of heat, momentum, etc—vanish, and the system is
uniquely described by a set of state variables which do not change with time.
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measures μ. In practice, this is too difficult to carry out in most cases of physical interest,
so instead we hypothesize that the system is ergodic. Therefore, one commonly postulates
that μ has a density ρ, specific to the ensemble at hand. Fermi’s work convinced physicists
that ergodicity was not a problem for systems of physical interest [4]—this hypothesis was
later challenged by systems such as the Fermi–Pasta–Ulam model [5], whose ergodicity
immediately, unexpectedly and correctly appeared far from obvious [6].

One therefore checks a posteriori whether these assumptions are valid or not, and finds
that the classical ensembles [2] describe most equilibrium situations very well, despite the fact
that the mathematical notion of ergodicity is violated, for instance, by the ideal gas in a cubic
box, by chains of harmonic oscillators and by blackbody radiation. Indeed, even in cases
where ergodicity is clearly violated, the assumption of ergodicity leads to thermodynamic
results.

The fact is that the ergodic hypothesis can be adopted for practical purposes, such as
computing the averages of physically relevant quantities: this set of observables is often
too small, and the observation times too short, to probe the finer differences among the
ensemble probability distributions for the high dimensional systems of interest in Statistical
Mechanics (cf chapter 1 of [2]). For these purposes, such differences are essentially
undetectable, particularly as the classical ensembles become in some sense ‘equivalent’ in
the thermodynamic limit (whereby the system volume grows to infinity while the number and
energy densities tend towards constants).

Given our primary interest in this narrow set of properties, one could consider an
alternative approach which focuses on demonstrating the ergodic property for a restricted
range of functions. This is precisely the approach undertaken by Khinchin. In his celebrated
book, Mathematical Foundations of Statistical Mechanics, Khinchin obtained important results
concerning the ergodic and mixing problem in statistical mechanics, without recourse to the
scarcely physically relevant concept of metric transitivity (as implied by the mathematical
ergodic notion of Birkhoff’s theorem) [7]. His physical perspective is based on the following
premises: that statistical mechanics concerns systems with a large number of degrees of
freedom; that the physical observables are but a few and quite special functions; and that it
is physically acceptable that ensemble averages do not coincide with time averages, for sets
of initial conditions whose measure vanishes in the N → ∞ limit. In particular, Khinchin
considered systems with a separable Hamiltonian, i.e. a Hamiltonian which is the sum of
single particle contributions,

H =
N∑

n=1

Hn(qn, pn),

and took the sum functions, defined by a sum over single particle contributions,

f (�) =
N∑

n=1

fn(qn, pn)

where fn = O(1), as the only observables. The pressure and the kinetic energy are examples
of such functions.

Denoting by 〈·〉 the microcanonical ensemble average, Khinchin demonstrated the
following under quite general hypotheses:

Prob

(
|f − 〈f 〉|

|〈f 〉| � K1N
−1/4

)
� K2N

−1/4,
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where K1 and K2 are O(1). This means that ensemble averages of sum functions only differ
from their time averages by more than a given tolerance along trajectories whose initial
conditions have a vanishing measure in the N → ∞ limit.

Mazur and van der Linden [8] later extended this result to systems of particles interacting
via short range potentials. In this theory, the good statistical properties required for the normal
thermodynamic behaviour are basically ascribed only to the fact that N is very large. This leads
to the conclusion that the details of the microscopic (phase space) dynamics are practically
irrelevant for a notion of ergodicity that describes physical systems, and indeed they ought to
be irrelevant, for thermodynamic behaviour to be as common as it is.

Now, consider an observable O which depends on the coordinates of only a few particles,
in a system with many degrees of freedom and weak particle interactions4. Khinchin shows
that equation (3) holds for all � ∈ M if its auto-correlation satisfies the relation

lim
t→∞〈O(t)O(0)〉 = 〈O〉2 (4)

for almost all initial conditions. This is the case if the memory of the initial state, carried by O,
is gradually lost, so that values of O reached after sufficiently long times become decorrelated
from the value in the initial state. In other words, the evolution of the system at hand, observed
through the evolution of O, is irreversible, because it is impossible to use the final values
of O to recover information about the initial state, or to return to it. We may then define
those evolutions such that equation (4) holds for the set of physically relevant observables as
physically irreversible.

Conversely, Kubo heuristically argues that the auto-correlation CO(t) = 〈O(t)O(0)〉
satisfies (4) if equation (3) holds uniformly in M (cf [9]): something, however, that seldom
happens in dynamical systems5.

It must be stressed that these are much weaker results than the mathematical concept
of ergodicity, which requires the validity of equation (3) for all elements of a large function
space, irrespective of the system dimension. These results concern only specific observables
for systems with many degrees of freedom. Furthermore, Khinchin’s approach was only
developed for the constant-energy ensemble.

As correlation functions are closely related to the response function, it is quite natural
to investigate the connection between ergodicity and linear response theory. This issue has
been thoroughly examined by Lee [10–14]. The main result is a connection between ergodic
behaviour and the response of a system to an external perturbation. One finds that physical
irreversibility, as defined above, is a necessary but not sufficient condition for ergodicity, while
the validity of ∫ ∞

0
CO(t) dt < ∞ (5)

is a sufficient condition. Note that equation (5) is implied by the Green–Kubo formulae, when
the static susceptibility

χ = lim
t→∞

1

t

∫ t

0

∫ s

0
RO(s − r) ds dr, where RO(s) = − d

ds
CO(s),

is finite. In [10–12], criteria are given to determine the validity of (5).

4 Khinchin considers this case, but it seems reasonable that the result should also hold in systems of particles
interacting through a short range potential, like those of [8].
5 Typically, there are periodic orbits (a set of vanishing measures), in which the time averages differ from those of
other trajectories.
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So what is the state of affairs for the nonequilibrium analogue? The situation is more
complex in the case of nonequilibrium systems in a steady state6. The connection between a
microscopic description and the phenomena described by irreversible thermodynamics appears
harder to find than in the equilibrium case. Specifically, the nonequilibrium counterparts of the
classical ensembles and of the ergodic hypotheses are not clearly identified yet: the form of a
measure μ to be used in equation (3) is not generally known, neither are the conditions under
which a single realization of the nonequilibrium system would correspond to such an ensemble
average. Consequently, the need arises for simple models on which various hypotheses can be
tested. Various proposals have been made in the literature, and various models used to assess
these proposals and to derive expressions that relate properties of practical interest. In the
latter sections of this review, we focus on some of the models of nonequilibrium systems that
have been devised over the past few decades, as well as their use in present day nonequilibrium
statistical mechanics.

3. Thermostats

The use of computers to simulate molecular systems has grown from humble beginnings
to become, in some fields, an indispensable research tool. Molecular simulation allows
both qualitative and quantitative investigation of real-life systems, thanks to the progress
across many disciplines (including technical and technological). Given that most real-world
systems are in (thermal) equilibrium with their surroundings, Monte Carlo (MC) techniques
provide a natural way of simulating such systems. MC relies upon ergodicity explicitly: the
observable measurement Ō is estimated as the weighted average 〈O〉, generated through
an appropriate sampling of phase space. However, such ensemble averages cannot be
calculated for systems where the ensemble distribution is not known (such as nonequilibrium
systems) or where time-ordered behaviour is sought (such as the calculation of transport
coefficients from autocorrelation functions). For these purposes, MD is the prevailing
technique. Interestingly, equilibrium MD (EMD) also makes implicit use of an ergodic
hypothesis: for the assumed equivalence of time averages from any initial condition and for
the determination of thermodynamic properties such as entropy, temperature or heat capacity.

MD takes the mechanical approach by solving the evolution dynamics of particles,
but is naturally suited to simulations of systems isolated from their surroundings, rather
than in (thermal) equilibrium with them. The dynamics must therefore be manipulated in
order to generate the relevant equilibrium ensemble, which Gibbs proposed as idealizations
of collections of systems in a given identical thermodynamic state. In achieving thermal
equilibrium, the resulting manipulation is termed a ‘thermostat’: analogous terms such as
‘barostat’ have been coined for other ensembles. The extension of MD to other ensembles, and
to nonequilibrium systems, has focussed on manipulating the dynamics to create behaviour
consistent with the target system. The claim is not that these equations are somehow a
true representation of the underlying dynamics—only that the reported values be correct for
properties we are interested in. Much of the theoretical work underpinning the success of MD
has been dedicated to demonstrations along these lines.

This is particularly true of nonequilibrium MD (NEMD), whose original purpose was
to compute transport coefficients. NEMD introduces artificial or ‘fictitious’ forces that
provide a convenient mechanical substitute for the thermodynamic forces (gradients in density,
temperature, shear rate) driving real nonequilibrium behaviour. The key advantage is that

6 These are systems whose state parameters remain constant in time, but such that there is transport of mass, energy,
entropy, etc.
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simulations driven by these fictitious forces are generally more efficient than those performed
using thermodynamic boundary conditions [15, 16]. In NEMD, the thermostat dissipates
precisely that energy introduced into the system by the fictitious forces. This procedure appears
to generate ensembles that are in some way the nonequilibrium counterparts of the equilibrium
ensembles, in the sense that these states appear to depend only on the macroscopic boundary
conditions. Unlike the equilibrium case, however, our understanding of these ensembles, their
distributions and indeed their interpretation, is still limited. There is no distribution that we
can hope to match, so we must turn to other criteria to assess their merits. We will consider
the physical appropriateness and relevance of thermostatted dynamics in much greater detail
in section 4. For now we note that, for practical purposes, assessment of their validity has
focussed on equivalence of transport coefficients between the equilibrium and nonequilibrium
systems. In some instances, there is a well-developed theory [15, 17–19]. In other cases, such
as the simple algorithm of [20] for the calculation of the viscosity of a simple fluid, such a
theory is not yet available (despite the algorithm’s success).

For the rest of this section, we outline the origin of thermostats in molecular simulation,
focussing on thermostats of particular relevance to the studies of nonequilibrium theories.

3.1. Early thermostats

The aim of the earliest thermostats was to provide a means of simulating thermal equilibrium,
rather than providing a comprehensive dynamical theory on the subject. Thermostatting was
performed with recourse to the equipartition theorem: controlling the mean kinetic energy
per degree of freedom was equivalent to controlling the system temperature. The earliest
thermostats [21] involved the regular rescaling of each particle’s momentum over the course
of a simulation—more sophisticated approaches soon followed [22, 23], although not without
their problems. Most pertinent here are the effect of scaling on the time-correlation data,
and the lack of time-reversibility. Correlation functions are required to calculate transport
coefficients for equilibrium systems: continual rescaling leads to artefacts in their estimates
that depend on the particular rescaling scheme [24]. This problem was overcome with the
differential correction schemes, of which the most well known is arguably the Berendsen
thermostat:

q̇ = p
m

, ṗ = F − 1

2τ

(
1 − T0

T

)
p. (6)

Here the additional non-Hamiltonian term transforms the discrete rescaling process into a
differential contribution in the equations of motion, governed by a time scale τ and the target
temperature T0 (T is the instantaneous kinetic temperature). This technique allows a ‘softer’
control of the temperature—the system is directed towards the target temperature, rather than
periodically rescaled to it. However, the Berendsen scheme is still not time-reversible, as can
be seen from equation (6).

Remark. The notion of time-reversibility considered here concerns the equations of motion,
i.e. the microscopic dynamics. If St : M → M is the time evolution operator for any time
t ∈ R, so that St� is the solution of the equations of motion with the initial condition � ∈ M,
the microscopic dynamics are called time reversal invariant if there exists a time reversal
operator I : M → M, I 2 = identity, such that

StI� = IS−t� for all t ∈ R, and all � ∈ M. (7)

For instance, I is the reversal of momenta for equation (8) below, but is more complicated
for the shearing system of [25]. This reversibility, however, has no direct relation with
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the thermodynamic notion of reversibility of quasi-static transformations, which concern the
macroscopic behaviour. As a matter of fact, a transformation of a macroscopic body can be
irreversible and very far from local thermodynamic equilibrium (LTE), while its microscopic
constituents still obey reversible equations of motion.

Time-reversibility is not a necessary property for the purposes of calculating dynamical
properties of molecular systems, as the widespread use of the Berendsen thermostat attests.
However, in addressing fundamental questions regarding dynamical systems, it is important
that our models alter as little as possible the nature of the microscopic dynamics as we know
it. As such, time-reversibility is an important property that dynamics arising from relevant
simulations should obey, if answers to fundamental questions are sought. In the following
subsections, we consider two important thermostatting schemes that satisfy this criterion—the
so-called Gaussian thermostats and the Nosé–Hoover thermostats.

3.2. Gaussian thermostats

Arguably the most elegant way of thermostatting a particle system subjected to external driving
is given by Gauss’ principle of least constraint [26, 27]:

Gauss’ principle (1829). Consider N point particles of mass mi, subjected to frictionless
bilateral constraints Φi and to external forces Fi . Among all motions allowed by the
constraints, the natural one minimizes the curvature, defined by

C =
N∑

i=1

mi

(
q̈i − Fi

mi

)2

=
N∑

i=1

1

mi

Φ2
i .

Gauss’ principle is equivalent to d’Alembert’s principle, converting it into a minimal principle
in the accelerations, based on the ‘constraint’ C. Gauss’ principle suffers some important
disadvantages when compared with the more commonly used extremal principles of variational
mechanics (Hamilton’s principle): it requires the calculation of accelerations, which are
generally more complicated to evaluate numerically; and it is not independent of coordinate
transformation and therefore, not as generally applicable as the Lagrangian and Hamiltonian
formulations of mechanics. However, it has at least one significant advantage over these other
approaches, relevant to the current topic—it applies equally for non-holonomic and holonomic
constraints [26]. In the case of holonomic constraints, Gauss’ principle is equivalent to the
principle of least action, producing Hamiltonian equations of motion.

Evans, Hoover and collaborators [28] utilized Gauss’ principle to develop a scheme for
constraining the energy of a nonequilibrium molecular dynamics simulation. Such a constraint
is non-holonomic, leading to non-Hamiltonian equations of motion. In particular, consider the
isokinetic (IK) constraint [29] which fixes the kinetic energy of the system, K = ∑i p2

i

/
2m,

and the isoenergetic (IE) constraint [30] which fixes the internal energy H0 = K + �int for
the particle interaction potential �int. For an N-particle system subjected to an external field,
these constraints yield the following dynamics for the ith particle:

q̇i = pi/m ṗi = Fint
i (q) + Fext

i (q) − α(�)pi , (8)

where Fint
i (q) and Fext

i (q) denote inter-particle forces and external forces doing work on the
system, respectively. The term −α(�)pi (recalling that � = (q, p)) makes the dynamics
dissipative (for non-zero external forces), allowing the system to reach a steady state in the
long time limit. If Fext

i (q) = CiFe, where Ci is a coupling constant for the ith particle, and
J =∑N

i=1 Ci q̇i , then

8
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αIK(�) = 1

2K

(
J · Fe +

N∑
i=1

pi

m
· Fint

i

)
and (9)

αIE(�) = 1

2K
J · Fe. (10)

Importantly, we note that α(�) contains terms involving the product of thermodynamic force
and conjugate flux terms. Indeed, these terms provide the only non-zero contribution to the
time-average α, indicating that α could be associated with the entropy production for the
system. It is through this relationship that the thermostat ceases to be a mere simulation
mechanism and becomes a potential component for nonequilibrium theories.

For equilibrium systems, the IE dynamics reduces to the usual Hamiltonian equations of
motion, while the IK dynamics has zero mean entropy production. A coordinate transformation
in (8) can be used to produce Hamiltonian versions for both IK [31] and IE [32] nonequilibrium
dynamics.

IK and IE constraints are only two possible options in Gaussian thermostats, which have
been extended to include a wide range of constraints, including isothermal-isobaric, isobaric-
isoenthalpic and constant stress ensembles [15, see chapter 6]. In the IE systems of many
interacting particles, the link between the phase space expansion rate, defined by

� ≡ div��̇ =
N∑

i=1

[
d

dqi

· q̇i +
d

dpi

· ṗi

]
, (11)

and the entropy production rate persists, because � is proportional to αIE. However, it is also
possible to develop Gaussian IE thermostats where the phase space expansion rate comprises
additional terms beyond those related to entropy production, as has been demonstrated for
the nonequilibrium Lorentz gas [33]. The opposite of the phase space expansion rate, −�, is
often referred to as the phase space contraction rate.

3.3. Nosé–Hoover thermostat

Nosé and Hoover [34–36] devised a popular thermostat whose form is similar in nature to
the Gaussian thermostat, but whose origins in theory are quite distinct. Consider a system
of particles with internal energy H0 exchanging heat with a reservoir at temperature T. The
interaction between particles and reservoir is represented by variables (s, pS), and the whole
(Hamiltonian) system has energy

H = H0 + 3NkT ln s +
p2

S

2Q
= p2

2m
+ 
(q) + 3NkT ln s +

p2
S

2Q
. (12)

For the variable set (q, p, s, pS), the system is Hamiltonian. The ingenuity of this approach is
that, under the transformed variables

q̃ = q, p̃ = p
s
, t̃ =

∫ t

0

dτ

s
, s̃ = s, ξ = pS

Q
, (13)

the partition function for the new variables becomes

Z =
∫

1

s
δ(H − E) dq dp ds dpS

=
[∫

Q

3NkT
e−βE e−βQξ 2/2 dξ

] ∫
e−βH0(q̃,p̃) dq̃ dp̃, (14)

where β = 1/kT . The distribution is therefore microcanonical in the original frame
(q, p, s, pS), but canonical with temperature T in the transformed frame (q̃, p̃). We can

9
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therefore simulate a canonical system (q̃, p̃) through the machinery of the Hamiltonian
(super-)system (q, p, s, pS). Conveniently, the equations of motion in the new frame are
quite straightforward:

dq̃
dt̃

= p̃
m

,
dp̃
dt̃

= F − ξ p̃,
dξ

dt̃
= 1

Q

(
p̃2

m
− gkT

)
(15)

(with s̃ redundant for simulation purposes).
The resemblance to the Gaussian equations is strong—however, the nature of the

thermostat multipliers (α for the Gaussian thermostat, ξ for the Nosé–Hoover) is subtly
different. While α is a phase function in the Gaussian case, here ξ is a phase variable, with
its own equations of motion. The connection between phase space compression and entropy
production remains the same as for the Gaussian thermostats, through the thermostat term ξ .
To simulate nonequilibrium systems, the equations of motion are augmented with appropriate
external fields, exactly as for the Gaussian case: under these conditions, the thermostat
dissipates energy and produces entropy in an analogous fashion.

As with the Gaussian approach, Nosé–Hoover dynamics can be extended to other
ensembles—Nosé’s original work [35] proposed both canonical and isothermal-isobaric
ensembles. Furthermore, Nosé’s Hamiltonian is only one of a family of Hamiltonians which,
coupled with an appropriate transformation to a new set of particle variables (q, p) 	→ (q̃, p̃),
can produce a canonical distribution [37]. In particular, while each of these couplings ensures
that the average over the transformed variables is canonical, the manner in which a trajectory
passes through the (q̃, p̃) space depends strongly on the particular choice. For example, the
canonical harmonic oscillator cannot be simulated using the usual Nosé–Hoover formulation,
as the resulting dynamics are not ergodic [36]. However, by a judicious alternative choice of
Hamiltonian H, together with a suitable alternative transformation of coordinates, the space
(q̃, p̃) can be ergodically spanned (for details, see [38, 39]). Finally, we note that the Nosé–
Hoover formalism assumes the existence of a globally defined set of canonical variables: a
condition satisfied for classical particle systems, but not for the classical limit of certain Lie
algebras, such as the SU(2) algebra used to describe the dynamics of spin states. Bulgac and
Kusnezov have extended the Nosé–Hoover approach to such systems as well [38], using their
method for constructing classical canonical variables for any Lie algebra [40].

3.4. Configurational thermostats

All the early thermostats controlled the temperature by controlling the kinetic energy (and while
Nosé’s thermostat was not designed with this method in mind, it is effectively the result). While
we traditionally associate the kinetic energy with system temperature, statistical mechanics
shows that there is in fact an infinite family of phase functions whose average at equilibrium
is the system temperature—including functions of positions alone, and not momenta. Such
an approach opens up the possibilities of a set of thermostats analogous to the Gaussian and
Nosé–Hoover types, but that control different phase functions—the so-called configurational
thermostats. In this section we briefly introduce the configurational temperatures, and then
their application as thermostats.

In 1997, Rugh [41] derived a dynamical expression for the temperature of a microcanonical
ensemble from first principles, by considering the rate of change in area of a surface of constant
energy in the phase space, as the energy is changed. The expression resulting from Rugh’s
elegant derivation

1

kT
=
〈
∇ · ∇H

‖∇H‖2

〉
(16)
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gives a (perhaps surprisingly) complicated expression for the temperature. The unusual
combination of both kinetic and configurational contributions in the temperature expression
led early investigators to a number of realizations. Isotropy and dimensionality arguments
indicate that the contributions from either the configurational or kinetic terms alone should
yield the temperature (to O(1/N)). Furthermore, equipartition-style results also indicate
that contributions from any individual phase variable should also yield the temperature.
Generalized temperature expressions of the form

kT = ∇H · B
∇ · B

(17)

were developed for phase space vector fields B matching particular criteria [42–44], of which
the usual equipartition result can be seen as a special case (B = (0, p)). The configurational
temperature TC, obtained from B = (F, 0), consists of only configurational contributions, and
is thus a way of determining the temperature without explicit reference to the kinetics of the
particles. Indeed, the first confirmation of this expression [45] involved comparison of the
computed configurational temperature with the input temperature in a Monte Carlo simulation
(which has no kinetic degrees of freedom).

Configurational temperatures thus provide an alternative phase function for thermostatting
a system. Gauss’ principle (or indeed Hamilton’s) is of little help in constraining the
configurational temperature, which constitutes a holonomic constraint: this approach would
constrain both the energy and the configurational temperature, which is not our objective. The
first configurational thermostats [46, 47] considered equations of motion of the form

dq
dt

= p
m

− ξ∇qTC(q),
dp
dt

= F. (18)

As with the kinetic thermostats, one can apply ‘hard’ thermostats that keep the configurational
temperature TC(q) constant, or ‘soft’ thermostats that control their average value. However,
various problems arise from the higher-order potential-energy derivatives required to calculate
∇qTC(q): they are computationally expensive; the ‘hard’ thermostat requires impractically
low timesteps; the ‘soft’ mechanism is not time-reversible; and holonomic constraints such as
bond lengths greatly complicates the calculations.

A much more attractive alternative, inspired by the Nosé–Hoover approach, is to consider
a thermostat of the form [48]

dq
dt

= p
m

− ξF,
dp
dt

= F,
dξ

dt
= 1

Q
(F · F − kT ∇ · F) . (19)

In the phase space (q, p, ξ), the Liouville theorem can be used to show that the canonical
distribution is preserved by this dynamics. This thermostat was first fully expounded and
subsequently developed by Braga and Travis [48–51] (independently of an early version
appearing in [52]; see also [53]). We note that the existence of the average value of ξ implies
that

ξ̇ = 0 = 1

Q
(F · F − kT ∇ · F) ⇒ kT = F · F

∇ · F
; (20)

in other words, the system temperature is identically the configurational temperature. A further
advantage of this approach is that it naturally preserves the holonomic constraints (such as
bond lengths) that would be preserved by the forces.

The configurational temperatures raise important issues regarding temperature and
thermostatting in nonequilibrium systems. They remind us that the association of temperature
with kinetic energy, away from equilibrium, is somewhat arbitrary. The fact that these
temperatures do not agree away from equilibrium [47] highlights the need for an operational
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concept of nonequilibrium temperature that is appropriate for molecular simulations.
Interestingly, if one were to define such an operational temperature as a Fourier-law potential
to describe the heat flux, one set of early studies [54] indicated that Rugh’s temperature (16)
provides the best representation. One possible approach is through the use of temperatures
based on degrees of freedom orthogonal to external driving fields, where they agree in the
large-N limit [55].

The configurational temperatures also remind us that the choice for thermostatting vector
B is somewhat arbitrary, to the extent that the temperature (17) is well defined. One can, for
example, choose thermostat terms of the form −αpn, for odd n, and successfully thermostat
the system. Hoover et al argue that for physical reasons, the usual form −αp is to be preferred
over higher-order alternatives, and that this usual form is more reliable for nonequilibrium
conditions [56]. Bright and Evans similarly argue that the IK thermostat is the most natural
of Gaussian kinetic thermostats [57].

Configurational thermostats have proven useful in identifying simulation artefacts induced
by kinetic thermostats such as string phases and antisymmetric stress [58–61]. The use of
relative particle positions in configurational thermostats provides a means of circumventing
this problem: unlike the kinetic thermostats, their configurational counterparts are not affected
by local streaming [62], although it has been recently suggested that an analogous problem
may affect the rotational modes [63]. As a relatively recent development, however, the theory
of configurational thermostats in nonequilibrium simulations has yet to be developed to the
same level as that of the kinetic thermostats.

3.5. Other thermostatting methods

Here we note some alternative thermostatting techniques that rely on quite different methods
to the aforementioned. Although devised through quite diverse approaches to thermostatting,
each offers its own particular insight.

3.5.1. Dirac brackets. Dirac’s method for constraining Hamiltonian systems [64, 65], well
known in quantum field theory, has also been applied in equilibrium MD simulations [66],
although it does not appear to be successfully used in NEMD. As with the classical Hamiltonian
systems, the formalism is not directly suited to non-holonomic constraints, but rather to paired
constraints associated with a holonomic constraint and its time derivative (thus reducing the
set of variables by one coordinate and one conjugate momentum). This symplectic structure
of Dirac’s method does not combine naturally with the NEMD methodology that requires a
single non-holonomic constraint on the kinetic energy [67].

3.5.2. Müller–Plathe approach. Most NEMD techniques require an explicit thermostat
to dissipate the energy introduced by the nonequilibrium field. The scheme introduced by
Müller–Plathe, used to calculate shear viscosities [20, 68, 69], does not introduce an external
field. Rather, it imposes a flux through molecular momentum exchange that induces the
relevant field shear rate, from which the viscosity transport coefficient can be determined.
This approach builds on an analogous technique used to calculate thermal conductivities and
Soret transport coefficients [20].

The periodic shear profile can be divided into layers (of constant x, say) parallel to the
direction of flow—for convenience we describe the layer with the lowest x streaming velocity
as the slowest layer, and that with the highest x streaming velocity as the fastest layer. The
algorithm exchanges the slowest molecules in the fastest layer with the fastest molecules in the
slowest layer, conserving the total energy and momentum (although not angular momentum).

12
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(a) (b)

(c)

Figure 1. Pump-billiard equilibrium cell (a); nonequilibrium cell (b); chain of cells (c).

However, the temperature is measured with respect to the local streaming profile, meaning
that this form of exchange will reduce the local temperature, countering the viscous heating
(entropy production) introduced by momentum exchange due to the induced shear rate. This
technique thus implicitly controls viscous heating through the momentum exchange algorithm
itself.

The Müller–Plathe example raises the notion of equivalence among nonequilibrium
ensembles. This concept is familiar in equilibrium statistical mechanics, where
thermodynamic quantities are divided into conjugate pairs, and the ensembles defined in
terms of which quantity for a given pair is held constant, and which allowed to vary. In the
NEMD case, the thermodynamic force F is held constant while the conjugate flux J varies: for
the Müller–Plathe algorithm, J is controlled while F varies. The success of both techniques,
in terms of the calculation of transport coefficients, indicates that this concept should be
extensible beyond the equilibrium realm. We explore this idea further in section 4.3.

3.5.3. Pump-billiard thermostat. Household heating and cooling devices often operate
through a compression mechanism. As a final example, we note a new thermostat that is
inspired by this form of temperature control—the so-called pump-billiard thermostat [70] that
models a (rarefied) gas in a pump.

The system consists of a periodic chain of billiard cells as in figure 1. The equilibrium
periodic cell is delimited by two equal vertical lines, �− and �+, and by two arcs of radius
r, amplitude φ = 2 arcsin r−1 and minimum distance 2d (cf figure 1(b)). Particles collide
elastically with the arcs, or exit the cell through �±. If a particle hits �−, it re-enters from
�+ and vice versa. At equilibrium, there is no transport of particles.

If the periodic cell is asymmetric (as in figure 1(b)), so that the ratio of the sizes of �+

and �−, α = |�+|/|�−| > 1, then the system is no longer in equilibrium, and a net current is
produced. The current then depends on the reinjection rule (figure 1(c)). The law

x ′ = x ∓ �, y ′ = α∓1y, v′
x = cvx, v′

y = cβ±1vy, c2 = v2
x + v2

y

v2
x + β±2v2

y

(21)

represents in an idealized way the effect of a compressing mechanism and of a ‘thermostat’
conserving the kinetic energy [70]: � is the length of the cell, while β is a second system
parameter. Analogous laws can be found in [71]. To ensure dissipation for the forward
motion, as is expected of thermodynamic systems, it suffices to take β < α. For βα > 1,
one obtains an average current 〈vx〉 proportional to ε = log α, the ‘driving field’, for small
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ε, while this proportionality is lost at larger values of ε. In this manner, a ‘toy-model’ of the
thermodynamic linear regime is recovered.

4. Physical suitability

As described in the previous section, thermostats are mathematical tools, introduced to
conveniently simulate thermodynamic phenomena from a microscopic, dynamical standpoint.
For a particular system of interest, it is simply unfeasible to simulate the microscopic boundary
interactions responsible for its thermodynamic state. This is as true of the exchange of energy
through walls to maintain thermal equilibrium as it is of the transport processes that maintain
a temperature gradient between two reservoirs. We know from experiment how such systems
behave macroscopically—an initial transience that depends on initial conditions leads to a
final state that depends only on the boundary conditions. For equilibrium systems, we avoid
this problem by using the statistical mechanical theory of ensembles: either to invoke the
equivalence of ensembles in the thermodynamic limit or in using thermostats to generate the
appropriate ensemble distribution.

For nonequilibrium transport processes, one looks for methods to account for the
coupling with the reservoirs, without actually simulating their microscopic dynamics. The
methodology of NEMD, accomplished through the introduction of artificial forces and an
accompanying thermostat, has been developed over the past decades. NEMD has proven to
be a highly successful technique for modelling nonequilibrium thermodynamic phenomena
including various rheological properties as well as other phenomena including fracturing, see
e.g. [15, 72–75]. As with all models of the physical world, some aspects of the NEMD model
represent real phenomena, while others are artefacts that do not reflect the behaviour of real
systems. Examined under greater scrutiny, the extent to which NEMD model properties can
be thought to describe real-world phenomena has been greatly clarified, and is the focus of this
section. In particular, we will consider the use of non-Hamiltonian equations, the description
of linear response, notions of equivalence of nonequilibrium ensembles, the replacement of
thermodynamic boundary conditions, the use of deterministic equations and the form of the
thermostat.

4.1. Non-Hamiltonian equations

Given that the simplest and most common mechanical systems considered by physicists are
naturally described using Hamiltonian equations of motion, one might object to the use
of thermostatted equations of motion for the construction of a theory of nonequilibrium
phenomena, on the basis that they contain artificial forces that lead to non-Hamiltonian
dynamics.

There is strong justification, however, for the use of non-Hamiltonian dynamics to
represent nonequilibrium dynamics [67, 76, 77]. A system that exchanges energy with its
environment should not be modelled by Hamiltonian equations of motion if that environment
is not included in the description [78]. Hamiltonian dynamics is characterized by conservation
of phase space volumes—but the volume restricted to arbitrary subspaces is not preserved. As
the Nosé–Hoover model demonstrates, the subsystem of interest in a universe is not bound
to preserve its volume (so cannot be Hamiltonian), even if the universe to which it belongs
is Hamiltonian. These ideas are schematically represented in figure 2 for a two-dimensional
phase space with Hamiltonian dynamics, where the subsystem dynamics corresponds to the
projection on the horizontal axis. While the subsystem dynamics retains the time reversal
invariance of the whole system, it does not retain the preservation of volume.
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Γe

Γs

Figure 2. Evolution of a phase space volume in the full (�s, �e)-space, and in the projected
�s -space. In the (�s, �e)-space, volumes are preserved, while in the �s -space they fluctuate. On
the other hand, if the backward evolution occurs in the full phase space, it also occurs in the reduced
space.

If the system in question is a nonequilibrium system induced by some external driving,
the environment will generate entropy while dissipating energy in reaching a steady state.
Given that the entropy in statistical mechanics is intimately connected with the phase space
volume, Hamiltonian dynamics would necessarily imply a preservation of entropy that seems
fundamentally at odds with the notion of nonequilibrium. It is therefore quite reasonable to
represent such dynamics using NEMD models that are time reversal invariant but that do not
preserve phase space volume—and therefore could not be Hamiltonian in nature. The fact
that they are not obtained through the ideal projection procedure described above, however,
implies that they must be used cum grano salis.

The use of artificial forces is not a strong criticism of the technique, given that the
equivalence with thermodynamic driving forces has been demonstrated [15]. Less certain is
the relation between the microscopic dynamics of a real nonequilibrium steady state and the
dynamics defined by NEMD. A key difficulty in this regard is the formal representation of
specific thermodynamic concepts in nonequilibrium dynamical models. While the connections
between temperature and kinetic energy, and between entropy and phase-space volume, are
well understood for equilibrium systems, these relationships are less clear for nonequilibrium
steady states. The lack of a comprehensive theory of nonequilibrium steady states makes it
difficult to assess the general limit of applicability of NEMD techniques, and the interplay
between the artificial forces and thermostats. However, the success of NEMD in reproducing
nonequilibrium steady-state phenomena suggests that it may provide a sounding board for
successful nonequilibrium theories.

4.2. Linear and nonlinear response theory

As we noted earlier, we do not expect molecular simulation to produce a perfect replication of
real-world microscopic behaviour—rather, we must assess its success against the simulation
objectives. For NEMD, the goal is to measure nonequilibrium transport behaviour. Apart
from numerical results demonstrating the success of the technique [15, 79–81], there is also a
comprehensive body of theory supporting its use [15].

NEMD has primarily been used, and theories developed, for the so-called linear regime,
where the response (induced flux) to an applied field varies linearly with that field, with the
coefficient of linearity given by the transport coefficient. The linear response can be associated
with equilibrium fluctuations (for example, through the Onsager regression hypothesis as a
consequence of the fluctuation–dissipation relations), implying that transport coefficients
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measured in the linear regime of a non-equilibrium system should be equal to those obtained
from equilibrium calculations. The success of the NEMD method is well established for
its capacity to reproduce equilibrium transport coefficients—often at greater computational
efficiency.

Beyond numerical evidence, a rigorous theory has been developed to demonstrate the
equivalence of the linear response to the equilibrium fluctuations. This linear response
theory determines the response of an arbitrary phase function (usually denoted as B) to
the nonequilibrium dynamics imposed by NEMD—dynamics that include artificial external
forces to generate the targeted nonequilibrium flux, as well as an appropriate thermostat (or
equivalent mechanism, such as a barostat) to generate the targeted nonequilibrium steady state.
It has then be shown, for a variety of dynamical equations (including Gaussian and Nosé–
Hoover thermostatting techniques), that the response of a system to a real thermodynamic
gradient is identical to the response to the artificial field—we will consider this further in
section 4.3.

As an example, the Evans–Gillan equations of motion [82, 83]

q̇i = pi/m

ṗi = Fi (q) + (Ei − Ē)Fe(t) − 1

2

N∑
j=1

Fij (qij · Fe(t)) +
1

2N

N∑
j,k

Fjk(qjk · Fe(t))
(22)

(where Ei is the energy of particle i and Ē = ∑N
i Ei/N) provide the most efficient presently

known model for the heat flow in systems close to equilibrium. The external field Fe is
artificial, but induces a response that precisely mimics the effect of a real temperature
gradient, transforming an inhomogeneous thermodynamic boundary condition that is very
difficult to simulate into a homogeneous mechanical term in the equations of motion. The
term (Ei − Ē)Fe(t) pushes particles with above-average energy in the direction of Fe(t) and
pushes particles with below-average energy in the opposite direction. Consequently, this field
induces an energy flow in the absence of temperature gradients and mass flows, efficiently
simulating heat flow under a temperature gradient, provided the number of particles and the
collisions among them suffice for LTE to be reasonably well approximated7.

A rigorous nonlinear response theory has also been developed by Evans, based on the
pioneering work of Kawasaki [84–86]. For example, Kawasaki showed that the boundary
condition that corresponds to planar Couette shear flow can be incorporated exactly into the
SLLOD8 equations of motion [84–86]. The result is that they give an exact description of the
shearing motion of systems arbitrarily far from equilibrium (while, indeed, no Hamiltonian
has been found for these equations of motion). A significant application of this work is in the
study of transient (nonequilibrium) systems away from the steady state, which lies beyond the
scope of this review.

4.3. Equivalence of nonequilibrium ensembles

We have already touched on the idea that one may extend the equilibrium ensembles to the
nonequilibrium steady states. In this section we explore the concepts of nonequilibrium
ensembles, and of equivalence among them.

7 For this to be the case, the artificial forces acting on the system must not dominate the other forces present, so
that their impact on the system behaviour is as limited as possible beyond their purpose. This problem is also faced
when deterministic (artificial) thermostatting terms are added to the equations of motion to simulate the effect of real
thermostats placed at the boundaries of the systems of interest, cf subsection 4.5 below.
8 The name SLLOD is not an acronym. It denotes a modification (form of transpose) of the DOLLS algorithm, an
NEMD algorithm developed (unsuccessfully) to compute the pressure tensor of Couette flow [168].
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Analogously to the pairs of conjugate thermodynamic variables generating conjugate
equilibrium ensembles, one may use NEMD to generate nonequilibrium ensembles. The
pairs of thermodynamically conjugate variables for equilibrium systems are determined from
the entropy contributions to the first law of thermodynamics: this idea is neatly extensible
to the nonequilibrium case. For a thermodynamic force X and flux J, one could consider
the (N, V, T ,X) and the (N, p, T ,X) ensembles as conjugate (for conjugate variables p
and V): one could also consider (N, V, T ,X) and (N, V, T , J ) as conjugate ensembles. In
the case of shear stress, these two ensembles correspond to the SLLOD ensemble and the
Müller–Plathe ensemble, respectively: in the first case, the field is imposed and the flux is
the independent state variable, while this is reversed in the second case. In 1985, Evans
and Morriss postulated a principle of equivalence of nonequilibrium ensembles, analogous
to that concerning equilibrium ensembles [15]. The principle states that linear responses of
conjugate nonequilibrium ensembles are equivalent. This principle, later generalized also
to nonlinear response, may provide a more formal basis for analysing the suitability and
range of applicability of the deterministic thermostatted dynamics, beyond the use of transport
coefficients.

Given that the earliest thermostats were computational devices designed to facilitate
EMD (and eventually NEMD) simulations at constant temperature, the first investigations
into the equivalence of nonequilibrium ensembles considered equivalence with respect to
transport coefficients measured for bulk fluids. Equivalence between the time correlation
functions (required to calculate equilibrium transport coefficients) for Newtonian, Gaussian
thermostatted and Nosé–Hoover thermostatted systems in the thermodynamic limit was
demonstrated, and subsequently the equivalent response to the field in the linear regime
for the same set of systems [15, 79, 80]. Later on, the equivalence of these thermostats under
nonlinear response was also demonstrated, but under conditions of mixing as well as in the
thermodynamic limit [18, 81].

The first result of this sort was related by Evans and Morriss to the equivalence of the
Norton constant current (flux) electrical circuit and the corresponding Thevénin constant
voltage (force) circuit. The voltage and the current being conjugate variables suggests
conjugate ensembles (N, V, T , J ) and (N, V, T ,E) as equivalent. This is the content of
the theory developed in [79–81]. Essentially, two Gaussian multipliers are introduced, to
hold the temperature and the current constant. From the resultant equations of motion, an
expression for the required applied field is obtained, whose fluctuations are consistent with the
flux fluctuations of the constant force ensemble (at zero frequency, the ‘Thevénin’ fluctuation
correlation function is proportional to the conductivity, while the ‘Norton’ fluctuation
correlation function is proportional to its inverse, the resistivity). It is clear, then, that this result
does not imply equivalence in every respect (just as it does not for the equilibrium ensembles).
Interestingly, the zero-frequency condition appears in some sense to be the nonequilibrium
counterpart to the thermodynamic-limit condition—the zero-frequency result is representative
of the system behaviour when the non-zero-frequency contributions are less significant, which
becomes the case as the number of degrees of freedom goes to infinity.

The theory formulated in [79–81] has been recently reconsidered and understood
in rigorous mathematical terms by Gallavotti and Presutti, who address the problem of
equivalence of ensembles for systems in contact with different kinds of thermostats, placed at
their boundaries [19, 87]. In particular, the following main result is stated in [87].

In the thermodynamic limit, the thermostatted evolution, within any prefixed time interval
[0,�], becomes identical to the frictionless evolution at least on a set of configurations
which have μ0-probability 1 with respect to the initial distribution μ0, in spite of the
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non-stationarity of the latter. In the same limit, also the frictionless evolutions with open
or elastic regularization become identical.

This result holds under the technical assumption of ‘local dynamics’, proven for the systems
of [87], which implies that in a finite time the external forces can only perform a finite
amount of work. Here, thermostatted evolution means Gaussian IE, while frictionless
refers to Hamiltonian heat baths with infinitely many degrees of freedom. Open and elastic
regularizations represent two different conditions on the process of taking the thermodynamic
limit.

A feature common to these theories and to the equilibrium theories is the need for large
N. In equilibrium statistical mechanics, large N is an essential ingredient not only for the
equivalence of ensembles but also for legitimate representation of thermodynamic concepts
such as entropy and temperature within the statistical mechanical framework. The large-N
limit plays a similar role for nonequilibrium theories as well.

As an example, we note that the phase space expansion rate of thermostatted systems
cannot in general be thought of as proportional to the entropy production rate of the
phenomenon under consideration [88, 89]. Consider Gaussian IE and IK thermostatted
dynamics, whose phase space expansion rate, �, is simply related to the term α of
equation (8). In this case, α is only a Lagrange multiplier, introduced in order to implement
Gauss’ principle of least constraint, and there is no reason, as discussed above, to believe that
it correctly represents a real heat reservoir or any other physical observable. Similarly, � does
not necessarily have any physical meaning, apart from the fact that, in d dimensions, its time
average obeys

� =
2dN∑
i=1

λi, (23)

where {λi}2dN
1=1 are the Lyapunov exponents of the system.

In [88], the values of � for the IK and IE systems were compared. Equation (9) yields

�IK = 〈�IK〉 = −(dN − 1)

[〈∑N
i=1

pi

m
· Fint

i∑N
i=1

p2
i

m

〉
+

〈∑N
i=1

pi

m
· Fext∑N

i=1
p2

i

m

〉]

= − 1

m

〈∑N
i=1 pi · Fext

〉
kBT

(24)

for an IK ergodic system, where the brackets 〈·〉 represent the average with respect to the
steady-state probability distribution, and where the inclusion of the temperature (with the
usual equipartition definition) implies near-equilibrium conditions. Introducing the particle
current density, I = 〈∑N

i=1
pi

m

〉/
V , and dividing �IK by the volume V of the system, to compare

dynamical averages with macroscopic quantities, one obtains

−�̂IK = I · Fext

kBT
, (25)

for the phase space expansion rate, where the right-hand side of equation (25) is formally the
expression for the entropy production rate in irreversible thermodynamics. Thus, a formal
connection between � and a physical observable has been found.

While equation (25) may not appear to depend on large N, in reality there is no concept
of a thermodynamic quantity away from this limit. For small N we can only speak of a
connection between �, the kinetic energy and the dissipated energy in statistical rather than
thermodynamic terms (cf section 5.4.4 in [77]). Indeed, irreversible thermodynamics is based
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on local thermodynamic equilibrium (LTE), in which the extensive properties are proportional
to N and depend further only on the temperature and on the number density n = N/V . Without
many interacting particles, that dependence is impossible. Finally, we note that relaxation
times for the values of observables turn out to be unphysically long for systems consisting of
a small number of particles.

What about the isoenergetic case, which imposes no constraint on the kinetic energy?
The temperature can again be defined by〈

N∑
i=1

p2
i

m

〉
= dNkBT , (26)

while equation (10) yields

�̂IE ≡ 〈�IE〉
V

= −(dN − 1)

〈∑N
i=1

pi

mV
· Fext∑N

i=1
p2

i

m

〉
. (27)

As is common in equilibrium statistical mechanics, where N is very large and fluctuations are
negligible with respect to the mean values, one may argue that the average of the ratio on the
right-hand side of (27) can be replaced by the ratio of the averages. Indeed, in order to speak
sensibly of temperatures or entropies, the conditions of LTE must be met, which imply large
N. We can thus neglect terms of order O(1/N) to obtain

−�̂IE = I · Fext

kBT
, (28)

which shows that entropy production and phase space expansion rates may be simply related
only for large N, even in the IE case. Away from large N, in all cases, one may only speak of
energy dissipation.

Thus, only for large N and small drivings (so that the equipartition temperature is a
reasonable approximation) may the average phase space expansion rates of the IK and IE
systems be considered to be related to the entropy production rates of a given physical
system, and hence related to each other. Nevertheless, the above calculations lead to
�̂IE = �̂IK + O(1/N) which constitutes one example of dynamical (if not thermodynamical)
equivalence of nonequilibrium models, analogous to that of equilibrium ensembles but not
restricted to near-equilibrium states. The result may be stated as follows.

In the thermodynamic limit, i.e. N,V → ∞, with density and the energy density converging to
a common finite value, the mean phase space expansion rates of IK and IE dynamics coincide.

Like the equivalence of Norton and Thevénin ensembles, this provides one explanation of
why different equations of motion, reaching steady states which differ from a microscopic
point of view, may nevertheless describe the same physical situation, at least in part, in the
thermodynamic limit. The issues considered in this subsection contribute to our understanding
of the fact that various aspects of real physical phenomena may be correctly described by
microscopic evolution laws that may appear artificial.

4.4. Equivalence versus non-equivalence

An equivalence principle has been proposed by Gallavotti in the context of turbulence in
[90], where a modified version of the forced Navier–Stokes equation, for a Newtonian
incompressible fluid, was introduced. Consider the equation

u̇ + (u · ∇)u = − 1

ρ
∇p + g + ν�u, ∇ · u = 0. (29)
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Here, u is the velocity field, ρ is the fluid density, p the pressure, g is a constant forcing term
and ν can either be the constant viscosity, in which case (29) is the Navier–Stokes equation,
or can be defined by

ν(u, ω, f) =
∫

[ω · f + ω · (ω · ∇)u] dx∫
(∇ × ω)2 dx

, (30)

with ω = ∇ × u and f = ∇ × g. In this case (29) is called the Gauss–Navier–Stokes equation,
is time-reversible and the enstrophy Q = ∫ ω2 dx is a constant of motion. The Navier–Stokes
and Gauss–Navier–Stokes equations thus represent the dynamics of potentially conjugate
ensembles, depending on which of the pair (ν,Q) is a constant of the motion.

With periodic boundary conditions, one can expand u in Fourier modes, obtaining an
infinite system of ODEs from (29). Truncating the expansion of u at a finite number of modes
yields a dynamical system in a finite-dimensional phase space, characterized by a given phase
space expansion rate. The equivalence principle then states [90] the following.

Equivalence principle. The stationary probability distributions of the Navier–Stokes and of
the Gauss–Navier–Stokes equations are equivalent in the limit of large Reynolds number,
provided the enstrophy Q and the viscosity ν are so related that the constant phase space
contraction rate of the Navier–Stokes equation and the average of the fluctuating phase space
contraction rate of the Gauss–Navier–Stokes equation are equal.

As with the equivalence of equilibrium ensembles, this principle is intended to hold for
local variables, while the large Reynolds number is invoked for the fluctuations of β to be fast
on the observation time scales. In that case, if the average of β equals ν, the macroscopic
behaviour of the Navier–Stokes equation and of the Gauss–Navier–Stokes equation should
be the same. The idea has been later generalized in [91] and verified to a certain extent in
[91, 92] for an infinite hierarchy of hydrodynamic equations and of relevant observables, under
low resolution approximations. However, further verifications at higher resolutions have not
been possible thus far [76]. This is probably due to the greater complications encountered in
solving partial differential equations, as opposed to ordinary differential equations, but it also
indicates that the equivalence of nonequilibrium ensembles needs to be further investigated.

Indeed, various instances of non-equivalence of both equilibrium and nonequilibrium
ensembles have been pointed out in various papers [93–96]. The non-equivalence of canonical
and microcanonical ensembles is often found in systems with an ‘anti-thermodynamic’
nature—such as systems with negative specific heats, long range interactions or non-interacting
particles under an external field—whose consequences for thermodynamics, such as a non-
extensive ‘entropy’, are not fully understood [93–95]. Analogously, non-equivalence of
nonequilibrium ensembles has been associated with a form of long-range interaction, as
observed for a model of electric conduction whose electrons interact with each other via a
Gaussian IK thermostat [96]. Interaction with the ions of a crystal are further modelled by
elastic collisions with hard scatterers. The authors of [96] conclude generating nonequilibrium
steady states though the use of deterministic thermostats requires some caution, at least when
there is no interaction between the particles other than that induced by the thermostat. A
similar conclusion can be reached observing that systems of particles which do not interact
with each other, and are subjected to external fields and thermostats, meet difficulties when
used to represent thermodynamic features, such as the validity of linear response [97–100].
Similarly, long-range interactions, especially if attractive, appear to generate macroscopic
behaviours at variance with the thermodynamic ones. This may be the reason for the difficulty
in observing the equivalence of the turbulence models discussed above, since the thermostatting
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mechanisms couple all their modes in a similar manner to the cases of (for example) [96, 97].
But this matter needs to be clarified.

In general, the necessary conditions for ensemble equivalence appear closely related to the
conditions for establishing LTE, which itself is a prerequisite for thermodynamic behaviour.
The equivalence and non-equivalence of nonequilibrium ensembles certainly merits more
thorough investigation, especially in relation to the presence or absence of LTE.

4.5. Deterministic bulk and boundary thermostats

The thermostats we have considered are all deterministic, reversible bulk thermostats: the
thermostat is coupled to each particle in the bulk of the system. This property runs at
odds with our everyday experience of temperature control, whereby a particle’s temperature
(however we might define it) would be influenced primarily by its neighbours. Instead, the
bulk thermostat acts universally while not being part of the same universe as the particles. This
can lead to strange phenomena, for example, when interactions between particles are discrete
rather than continuous [101, 102]. While response theory demonstrates that these techniques
generate correct transport coefficients, this does not address the issue of why one would choose
such an approach, over other techniques with more overt connections to physical reality.

As an example, consider the study of mass transport. The mechanically driven system
uses the colour field technique—one could alternatively implement a thermodynamically
driven nonequilibrium simulation by maintaining a concentration profile along the length
of the simulation cell. This can be achieved via the dual control volume method [103],
whereby a Hamiltonian MD cell is bounded by two cells maintained at different densities via
MC. Typically, the advantage of the mechanical force approach is one of efficiency, which
is equally true of microporous systems as it is of bulk systems (e.g. [16]). The difficulty
and computational cost in maintaining the thermodynamic boundary condition is a clear
disadvantage.

To implement more realistic thermodynamic boundary conditions requires yet further
computational cost. As alluded to in the introduction, the way in which a system of interest is
maintained in a steady state can involve an enormous number of degrees of freedom. We know
that these interactions will vary from system to system: yet the irreversible thermodynamics
we are interested in appears largely independent of the microscopic details of such interactions.
We thus arrive at the idea that the majority of thermodynamic phenomena taking place in the
system of interest are not influenced by the details of the coupling with its environment. For
instance, if the system of interest is sufficiently large itself, then most of it is physically far
removed from the reservoirs, and interacts with them only indirectly, via its boundary regions.
Rieder, Lebowitz and Lieb put it in these terms: ‘the properties of a ‘long’ metal bar should
not depend on whether its ends are in contact with water or with wine ‘heat reservoirs’ at
temperature T1 and T2’ [104]. This suggests that different forms of thermostats may lead to
the same thermodynamic phenomena within the system of interest. It thus seems legitimate to
choose the most convenient description of the effect of the reservoirs on the system, although
the question of which properties of the system of interest may be properly described by which
models of the reservoirs remains to be satisfactorily addressed.

A key point to note here, however, is that the theory of equivalence of thermostatted
responses, to which we refer, is based on the assumption that a condition similar to LTE
is satisfied. For instance, [18] states that the equivalence of steady-state averages and time
correlation functions under either Gaussian IE, Gaussian IK and Nosé–Hoover thermostats
holds even in the far-from-equilibrium nonlinear regime, as long as the system is mixing and
the quantities involved are local and not trivially related to constants of the motion. The
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absence of such a condition can lead to peculiarities preventing a fully general theory of
equivalence of responses. For instance, in the problem of heat conduction in one-dimensional
systems, thermostatting all particles induces ‘normal’ behaviour, while for generical systems,
with boundary thermostats and in the absence of external forces, one obtains anomalous
behaviours. We add that, for LTE to be established, the thermostatting artificial terms should
not dominate, as may occur in systems with few or noninteracting particles [97].

4.6. Deterministic versus stochastic thermostats

Among boundary thermostats, one often finds the implementation of Maxwellian boundary
conditions, meaning that a particle hitting a wall will be reflected with a Maxwellian
distribution of velocities corresponding to the temperature of that wall. With two opposite
walls at different temperatures, one expects a steady state to be established and that is largely
independent of whether a stochastic or deterministic boundary thermostat is used. But a
complete equivalence is far from established and is probably not reasonable to expect. While
the Gibbs entropy of deterministically thermostatted nonequilibrium systems does not exist
(tending to −∞ over time [105, 106]), it typically does exist for stochastically modelled
nonequilibrium steady states [107]. This is due to the fact that deterministically thermostatted
steady states are described by a singular phase space probability distribution, while the
stochastically driven systems are generally thought to be characterized by regular distributions.
However, the Gibbs entropy is a rather peculiar object in nonequilibrium systems, and this
difference need not impair the equivalence picture.

At the same time, stochastic thermostats have various advantages over the deterministic
ones, from the perspective of mathematical tractability. The stochastic description, commonly
assumed to be a reduced (mesoscopic) representation of the ‘chaotic’ microscopic dynamics,
is free from the intricate fractal structures of deterministic dynamics [108]. Considering
that, at times, the mathematical approach to deterministic dynamics in physical contexts
makes assumptions which can hardly be directly verified (cf below and [109]), the stochastic
approach is thought by some authors to be preferable to the deterministic one [108, 110].
This has to be balanced by the observation that the identification of physical observables
in stochastic processes is often affected by ambiguities [76, 111–114]. Even from the
mathematical standpoint, the use of deterministic or of stochastic approaches has to be dictated
by convenience. Hence, there is no absolutely superior method.

5. Recent applications to nonequilibrium theories

Many of the observations in the previous section have been drawn from investigations of
nonequilibrium phenomena, where thermostats have been applied under nonequilibrium
conditions. For example, the need for sufficient degrees of freedom in order to equate
statistical and thermodynamic properties has been recognized through investigations over a
range of systems, including the highly idealized Lorentz gas model, microporous media and
bulk media. In this section, however, we focus on the role of thermostats in the development
of theories of nonequilibrium phenomena.

5.1. Phase space expansion rate and fluctuation relations

In the space of relevant variables, neither the Gaussian thermostatted equations of motion nor
the Nosé–Hoover equations of motion can be derived from a Hamiltonian. This is true even
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in the absence of external perturbing fields, which implies that the usual form of the Liouville
equation for the N-particle distribution function f

df

dt
= 0,

which is related to the conservation of phase space volumes, does not hold in general. Volumes
do indeed fluctuate and the corresponding generalized Liouville equation takes the form

df

dt
= −f ∇� · �̇ = −f �,

where �, the phase space expansion rate, is the divergence of �̇ in the 2dN-dimensional
phase space (d being the dimension of the physical space) defined by equation (11).

Typically, thermostatted equations of motion lead to 〈�〉 < 0, implying that volumes
contract on average and that, in the steady state, the whole probability is distributed on a set of
vanishing phase space volume. This reveals that the Gibbs entropy for thermostatted equations
of motion is not fit for the purpose of describing the entropy of a nonequilibrium steady state,
since it diverges [105, 106]; formally one may write:

SG = −kB

∫
f (�) ln f (�) d� = −∞. (31)

This result is independent of how close to equilibrium the system might be; hence, it is not a
consequence of lack of local equilibrium, without which it certainly makes no sense to speak of
thermodynamic entropy9. Nevertheless, as we have seen above, the phase space expansion rate
of certain Gaussian thermostatted IE systems is simply related to the entropy production rate,
and this has led to [25], a milestone of contemporary nonequilibrium statistical mechanics.

5.1.1. History. In 1993, Evans, Cohen and Morriss published a seminal paper [25] on the
fluctuations of the dissipated power, or the entropy production rate σ , in macroscopic systems
close to equilibrium. In the model of [25], this observable equals the dissipation function �

[115] (defined in section 5.1.3) as well as the phase space contraction rate −�. The relation
proposed and tested in [25] is

Pτ (A)

Pτ (−A)
= eτA, (32)

where A and −A are averages of the dissipated power, divided by kBT , on evolution segments
of duration τ and Pτ is their steady-state probability. To obtain this remarkable relation,
which does not contain any adjustable parameter, the authors were inspired by the periodic
orbit theory being developed in those years [116, 117].

In 1994, Evans and Searles obtained the first transient �-FR, which is only formally
similar to equation (32), because it concerns an ensemble of experiments all beginning in
the same initial state, in which � is measured [115, 118–123]. Differently, equation (32)
concerns a single steady-state experiment, which is observed as it evolves in time. The only
requirement for the transient �-FRs to hold is the reversibility of the microscopic dynamics,
while the steady-state relation needs further conditions to be met. The transient relations have
been experimentally verified [124].

9 A solution to this difficulty is proposed in [161], where a microscopic definition of entropy is presented, based on
a truncation of the Green’s expansion of f (cf below).
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In 1995, Gallavotti and Cohen made the use of the Lyapunov weights of [25]
mathematically precise, introducing the chaotic hypothesis [109, 125–127], which states
the following.

Chaotic hypothesis. A reversible many-particle system in a stationary state can be regarded
as a transitive Anosov system for the purpose of computing its macroscopic properties.

The result is a steady-state relation, which we call �-FR, as it concerns the fluctuations of
�. As systems of physical interest cannot be expected to be of Anosov type, Gallavotti and
Cohen assumed that their deviations from the ideal situation are not relevant in practice, i.e.
for their observable properties.

This motivated further studies of the Evans–Searles approach [128] and eventually led
to the identification of the roles, differences and contact points of the theories developed by
Gallavotti and Cohen and by Evans and Searles [76]. It was recognized that the Gallavotti and
Cohen theory is more concerned about mathematical aspects, like the existence of systems
for which the �-FR can be rigorously obtained, independent of its physical relevance, while
the Evans and Searles theory is mostly interested in physical aspects, such as the time scales
and the physical mechanisms involved in the verification of the �-FR in systems which do
verify it. These two approaches contribute together to our understanding of nonequilibrium
phenomena, even if they mostly proceed along distinct paths (see [76] for open problems
met in both approaches). A similar parallel can be made between the ergodic hypothesis of
physical interest, championed by Khinchin [7], and the mathematical ergodic theory, which
may be traced back to the works of Birkhoff [129]. Even in the case of the ergodic hypothesis,
indeed, one is faced with the fact that most systems of physical interest are not mathematically
ergodic, and with the problem of time scales: yet the ergodic hypothesis is almost universally
accepted.

5.1.2. The Gallavotti–Cohen approach. The idea proposed by Gallavotti and Cohen [109]
is that dissipative, reversible, transitive Anosov maps, S : M → M, are idealizations of
nonequilibrium particle systems and hence that properties like the �-FR are enjoyed by
physical systems as well. That the system evolves with discrete or continuous time was
thought to be a side issue in [109]. To prove the validity of the �-FR for Anosov maps, one
should first observe that they admit a Markovian partitioning of the phase space M [130].
This is a subdivision of M into cells whose interiors are disjoint from each other, and whose
boundaries are invariant sets, which in two dimensions are constructed using pieces of the
stable and unstable manifolds. Consequently, the interior of a cell is mapped by S into the
interior of other cells, and not across two cells, which would include a piece of their boundary.
Furthermore, arbitrarily fine partitions can be constructed, exploiting the time-reversibility of
the dynamics. Gallavotti and Cohen further assume that the dynamics is transitive, i.e. that a
typical trajectory explores all regions of M, as finely as one wishes. It is this structure that
guarantees that the probability (Lyapunov) weights of equation (1) in [25], from which the
�-FR follows, can be assigned to the cells of a Markov partition.

More precisely, let �(X) = log J (X), where J is the Jacobian determinant of S10 and
consider the steady-state probability of the dimensionless phase space contraction rate eτ ,
obtained along a trajectory segment wX,τ , of origin X ∈ M and duration τ :

10 If the point X has d coordinates, Xi, i = 1, . . . , d , we can write Xi(k + 1) = fi(X(k)), where fi is a suitable function
determined by S. Then J (X) is the absolute value of the determinant of the matrix (∂fi/∂Xj )X .
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eτ (X) = 1

τ 〈�〉
τ/2−1∑

k=−τ/2

�(SkX), (33)

where 〈·〉 is the steady-state phase space average and SkX denotes the evolution that S generates
from the initial condition X(0) = X. Let Ju be the Jacobian determinant of S restricted to
the unstable manifold V +, i.e. the product of the asymptotic factors of separation of nearby
points, along the directions in which distances asymptotically grow at an exponential rate. If
the system is Anosov, the probability of the event eτ (X) ∈ Bp,ε ≡ (p − ε, p + ε) coincides, in
the limit of fine Markov partitions and long τ ’s, with the sum of the weights

wX,τ =
τ/2−1∏

k=−τ/2

1

J u(SkX)
(34)

of the cells containing the points X such that eτ (X) ∈ Bp,ε . Then, if πτ (Bp,ε) is the
corresponding probability, one can write

πτ (eτ (X) ∈ Bp,ε) ≈ 1

M

∑
X,eτ (X)∈Bp,ε

wX,τ , (35)

where M is a normalization constant. If the support of the physical measure is M, which is
the case if the dissipation is not exceedingly high [131], time-reversibility guarantees that the
support of πτ includes an interval [−p∗, p∗], p∗ > 0, and one can consider the ratio

πτ (Bp,ε)

πτ (B−p,ε)
≈
∑

X,eτ (X)∈Bp,ε
wX,τ∑

X,eτ (X)∈B−p,ε
wX,τ

, (36)

where each X in the numerator has a counterpart in the denominator. Denoting by I the
involution which replaces the initial condition of one trajectory with the initial condition of
the reversed trajectory, time-reversibility yields

�(X) = −�(IX), wIX,τ = w−1
X,τ and

wX,τ

wIX,τ

= e−τ 〈�〉p (37)

if eτ (X) = p. Taking small ε in Bp,ε , the division of each term in the numerator of (36) by its
counterpart in the denominator approximately equals e−τ 〈�〉p, which then equals the ratio in
(36). In the limit of small ε, infinitely fine Markov partition and large τ , the authors of [109]
obtain the following theorem.

Gallavotti–Cohen theorem (1995). Let (M, S) be dissipative (i.e. 〈�〉 < 0), reversible and
assume that the chaotic hypothesis holds. Then,

πτ (Bp,ε)

πτ (B−p,ε)
= e−τ 〈�〉p (38)

with an error in the argument of the exponential which can be estimated to be p- and
τ -independent.

If the �-FR (hence the chaotic hypothesis on which it is based) holds, the function
C(p; τ, ε) = (1/τ 〈−�〉) log[πτ (Bp,ε)/πτ (B−p,ε)] tends to a straight line of slope 1 for
growing τ , apart from small errors. If � can be identified with a physical observable, the
�-FR is a parameter-free statement about the physics of nonequilibrium systems.

Under the assumption that −� coincides with the entropy production rate, the �-FR can
be used to obtain the Green–Kubo relations and the Onsager reciprocal relations, in the limit
of small external drivings [132]. This way, the �-FR appears to be an extension of such
relations to nonequilibrium systems. In order to obtain this result, Gallavotti assumes that
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the (Gaussian isokinetic, continuous time) system is driven by � fields F = (F1, F2, . . . , F�),
that the phase space contraction rate vanishes when all drivings vanish, and that it can be
expanded as −�(X) = ∑�

i=1 FiJ
0
i (X) + O(F 2). In this way, the linear ‘currents’ J 0

i , which
are proportional to the forces Fi, are defined. If the decay of the �-autocorrelation function is
sufficiently fast, one then has

ζ(p) ≡ − lim
τ→∞

log πτ (p)

τ
= 〈�〉2

2C2
(p − 1)2 + O((p − 1)3F 3),

C2 =
∫ ∞

−∞
〈�(StX)�(X)〉c dt,

(39)

where 〈·〉c denotes the cumulant. Thus, the validity of the �-FR, equation (38), implies
〈−�〉 = C2/2 + O(F 3). Now, let the full (nonlinear) ‘currents’ be defined by Ji(X) =
−∂Fi

�(X), and the transport coefficients be Lij = ∂Fj
〈Ji〉|F=0. The derivatives with respect

to the parameters F require a property of differentiability of SRB measures, which has been
proven by Ruelle [133]. Assuming this property, the validity of the �-FR and time-reversibility,
one can write

〈−�〉 = 1

2

�∑
i,j=1

(
∂Fj

〈Ji〉 + ∂Fi
〈Jj 〉

)∣∣
F=0FiFj = 1

2

�∑
i,j=1

(Lij + Lji)FiFj (40)

to second order in the forces. Equating this with C2/2 and considering (Lij + Lji)/2 with
i = j , one recovers the Green–Kubo relations. To obtain the symmetry Lij = Lji , Gallavotti
extends the �-FR to consider the joint distribution of −� and its derivatives. He introduces
the dimensionless current q, averaged over a long time τ , through the relation

1

τ

∫ τ/2

−τ/2
Fj∂Fj

�(StX) dt = Fj

〈
∂Fj

�
〉
q(X) (41)

and considers the joint distribution πτ (p, q), with the corresponding large deviation functional
ζ(p, q) = − limτ→∞ 1

τ
log πτ (p, q). The result is a relation similar to the �-FR:

lim
τ→∞

1

τ 〈−�〉p log
πτ (p, q)

πτ (−p,−q)
= 1. (42)

This makes the difference (ζ(p, q)−ζ(−p,−q)) independent of q, which leads to the desired
result, Lij = Lji , in the limit of small F. This work was refined in [134]; for related results,
based on orbital measures, see [67, 99].

Assuming that the currents and transport coefficients, defined here in terms of the phase
space contraction rate, do represent physical quantities, these results show that the FRs
are consistent with irreversible thermodynamics, close to equilibrium. Hence they may be
considered in the construction of a comprehensive nonequilibrium theory. However, some
difficulties affect the present approach, the first being that �, which is directly related to
the thermostatting term αth, is only proportional to the energy dissipation rate divided by
the kinetic energy in very special cases [76, 135].

Because global fluctuations are not observable in macroscopic systems, local fluctuation
relations have been devised, see e.g. [136–138], and in [92] a local version the �-FR was
tested numerically. In particular, the local �-FR of [138] concerns an infinite chain of weakly
interacting chaotic maps. Let V0 be a finite region of the chain centred at the origin, T0 > 0
be a time interval and define

〈�〉 = lim
V0,T0→∞

1

|V0|T0

T0−1∑
j=0

�V0(S
jX), p = 1

〈�〉|V |
T0/2∑

j=−T0/2

�V0(S
jX), (43)
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where V = V0 × T0, �V0(X) is the contribution to � given by V0, and |E| denotes the volume
of the set E. Then, one obtains

πV (p) = eζ(p)|V |+O(|∂V |) with
ζ(p) − ζ(−p)

p〈�〉 = 1 and |p| < p∗, (44)

where |∂V | is the size of the boundary of V, p∗ � 1 and ζ is analytic in p. The contribution
of the boundary term |∂V | should decrease with growing V, leading to the �-FR in the limit
of large (compared to microscopic scales) volume V0 and long times T0.

This naturally leads to a possible extension of the Onsager–Machlup theory (see
section 5.2) to nonequilibrium systems [139, 140], again taking the entropy production rate as
proportional to �.

Because � differs from the dissipated power, in general, some interesting problems have
arisen in the physical interpretation of the Gallavotti–Cohen theorem [135]. For instance, it
was found that the steady-state �-FR is difficult, if not impossible, to verify in non-isoenergetic
systems with singular �, close to equilibrium [121, 141, 142]. To explain these facts, [135]
investigates Gaussian isokinetic systems, whose � is the sum of a dissipative term � and
a conservative singular term. In that case, � obeys the FR, while the conservative term
does not, but its averages over long time intervals are expected to become negligible with
respect to the averages of � as the length of the interval grows [135, 142]. Thus, in the long
time limit, the �-FR should hold as a consequence of the validity of the �-FR , while the
convergence times of the �-FR would diverge when equilibrium is approached, because �

vanishes as the square of the driving forces. These observations eventually led to the conclusion
that, in some cases, � describes heat fluxes, not entropy productions [135, 143, 144], and
hence that in those cases the �-FR has to be modified, to mimic the heat FR of Van Zon and
Cohen for stochastic systems [145]. This amounts also to saying that the white noise present in
the systems studied by Van Zon and Cohen is reproduced to some extent by the deterministic
chaos of the uniformly hyperbolic dynamical systems of [144], and that the same may be
expected in sufficiently chaotic particle systems, like the typical NEMD models. Therefore,
we have one example of equivalence between stochastic and deterministic evolutions, as far
as the FRs are concerned.

5.1.3. The Evans–Searles approach. Having realized that � has no obvious physical
meaning, in general, and that the �-FR is based on strong assumptions which are not strictly
met by systems of physical interest, one may legitimately ask whether a steady-state relation for
a physically relevant observable, like the dissipated power, may be obtained under physically
meaningful assumptions. Alternatively, one may ask which physical mechanisms are at work
when a given observable obeys a fluctuation relation. This goal is the subject of [128], in
which the original approach of Evans and Searles, first proposed in [118], is developed.

Reference [128] considers time reversal invariant dynamics Sτ : M → M on a phase
space M, with the time reversal involution operation I : M → M. Time integrals and time
averages of observables φ : M → R are denoted as

φt0,t0+τ (�) ≡ 1

τ

∫ t0+τ

t0

φ(Ss�) ds ≡ 1

τ
φt0,t0+τ (�). (45)

For the purpose of deriving FRs, φ : M → R is assumed to be odd with respect to time
reversal, i.e. φ(I�) = −φ(�).

An absolutely continuous probability measure dμ(�) = f (�) d� on M, with time even
density [f (I�) = f (�)], is introduced, in order to define the Dissipation Function
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�(�) = − d

d�
log f

∣∣∣∣
�

· �̇ − �(�), or �t0,t0+τ (�) = 1

τ

[
ln

f (St0�)

f (St0+τ�)
− �t0,t0+τ

]
.

(46)

It is a remarkable fact that � equals the dissipated power (up to O(1/N) corrections, for
N-particle systems) if f is the equilibrium probability density for the given system, or if
it is appropriately obtained from the equilibrium probability density [128]. The dissipation
function does not encompass any non-dissipative terms, and therefore vanishes at equilibrium
[146].

The existence of the logarithmic term of equation (46) has been called ergodic consistency
[115]. For δ > 0, denote (A)δ ≡ (A − δ,A + δ), A ∈ R, and let E(φ ∈ (a, b)) be the set of
points � such that φ(�) ∈ (a, b). Then, E(�0,τ ∈ (−A)δ) = ISτE(�0,τ ∈ (A)δ), and the
transformation � = ISτX has Jacobian∣∣∣∣ d�

dX

∣∣∣∣ = exp

(
−
∫ τ

0
�(SsX) ds

)
= e−�0,τ (X), (47)

which leads to ∫
E(�0,τ ∈(A)δ)

f (�) d�∫
E(�0,τ ∈(−A)δ)

f (X) dX
=

∫
E(�0,τ ∈(A)δ)

f (�) d�∫
E(�0,τ ∈(A)δ)

exp[−�0,τ (X)]f (X) dX
(48)

i.e. to the transient �-FR

μ(E(�0,τ ∈ (A)δ))

μ(E(�0,τ ∈ (−A)δ))
= e[A+ε(δ,A,τ)]τ , |ε| � δ (49)

which concerns the non-invariant probability measure μ of density f . Time-reversibility is
essentially the only ingredient in the above derivation. This relation is valid for any f , and
hence any � that is obtained from f as in equation (46), but it acquires the meaning of a
relation for a physically relevant quantity only if f is properly chosen, as mentioned above.

To obtain the steady-state �-FR, consider instead the ratio

μ
(
E
(
φt0,t0+τ ∈ (A)δ

))
μ
(
E
(
φt0,t0+τ ∈ (−A)δ

)) =
∫
E(φt0 ,t0+τ ∈(A)δ)

f (�) d�∫
E(φt0 ,t0+τ ∈(−A)δ)

f (�) d�
(50)

and take t = 2t0 + τ . Then

E
(
φt0,t0+τ ∈ (−A)δ

) = IStE
(
φt0,t0+τ ∈ (A)δ

)
(51)

so that setting � = IStW and performing the same algebra leads to

μ
(
E
(
φt0,t0+τ ∈ (A)δ

))
μ
(
E
(
φt0,t0+τ ∈ (−A)δ

)) = 〈 exp
(− �0,t0 t0

)〉−1
φt0 ,t0+τ ∈(A)δ

. (52)

Using μ(E) = μt0(S
t0E) = ∫

St0 E
ft0(W) dW , where μt0 is the evolved measure up to time t0,

and ft0 its density, one obtains

μt0(E(φ0,τ ∈ (A)δ))

μt0(E(φ0,τ ∈ (−A)δ))
= μt0

(
St0E

(
φt0,t0+τ ∈ (A)δ

))
μt0

(
St0E

(
φt0,t0+τ ∈ (−A)δ

)) (53)

= μ
(
E
(
φt0,t0+τ ∈ (A)δ

))
μ
(
E
(
φt0,t0+τ ∈ (−A)δ

)) = 1

〈exp(−�0,t t)〉φt0 ,t0+τ ∈(A)δ

. (54)

This has been called the φ-FR relation [128] and for φt0,t0+τ = �t0,t0+τ , it may be rewritten as

1

τ
ln

μt0(E(�0,τ ∈ (A)δ))

μt0(E(�0,τ ∈ (−A)δ))
= A + ε(δ, t0, A, τ) − 1

τ
ln
〈
e−t0(�0,t0 +�t0+τ,2t0+τ )

〉
�t0 ,t0+τ ∈(A)δ

. (55)
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This is an exact relation for �, which may yield the steady-state �-FR if μt0 tends to a
steady-state distribution μ∞ for t0 → ∞ and certain conditions are met. In the τ → ∞ limit,
this would turn (55) from a statement on the ensemble ft0 into a statement concerning also
the time statistics of a single typical trajectory. One delicate point in this framework is that t0
tends to infinity before τ does and the growth of t0 could make the conditional average in (55)
diverge. However, the decay of the auto-correlation of �, with respect to the initial probability
measure μ0, suffices. Indeed, the conservation of probability yields

〈e−s�0,s 〉 = 1 for every s ∈ R, (56)

and if the �-autocorrelation time vanishes instantaneously, one can write

〈e−t0�0,t0 e−t0�t0+τ,2t0+τ 〉�t0 ,t0+τ ∈(A)δ
= 〈e−t0(�0,t0 +�t0+τ,2t0+τ )〉
= 〈e−t0�0,t0 〉〈e−t0�t0+τ,2t0+τ 〉 (57)

and

1 = 〈e−s�0,s−(t−s)�s,t 〉 = 〈e−�0,s 〉〈e−�s,t 〉, i.e. 〈e−(t−s)�s,t 〉 = 1 for all s, t. (58)

Hence, the logarithmic correction term in (55) identically vanishes for all t0, τ , and the �-FR
is verified even at short τ ’s. Of course, this idealized situation does not need to be realized,
but a constant K, such that

0 <
1

K
� 〈e−t0(�0,t0 +�t0+τ,2t0+τ )〉�t0 ,t0+τ ∈(A)δ

� K (59)

is likely to exist in standard NEMD models [128]. As a matter of fact, the decorrelation (or
Maxwell) time tM expresses a physical property of the system; thus, it does not depend on t0
or τ , and depends only mildly on the external field

(
usually, tM(Fe) = tM(0) + O

(
F 2

e

))
.

Its order of magnitude is that of the mean free time. If these scenarios are realized,
equation (59) follows and the logarithmic correction term of equation (55) vanishes as 1/τ ,
with a characteristic scale of order O(tM).

Therefore, the steady-state �-FR can be obtained only from time-reversibility and from
the decay of the �-autocorrelation. One may then write

1

τ
ln

μ∞(E(�0,τ ∈ (A)δ))

μ∞(E(�0,τ ∈ (−A)δ))
= A + correction, (60)

where the correction term can be made arbitrarily small taking sufficiently large τ and
sufficiently small δ. This explains that the relevant convergence times are functions of
material properties of the systems and do not diverge in the equilibrium limit, in systems of
thermodynamic interest. The decorrelation times of � are indeed material properties, which
are approximately constant around equilibrium. Also, the required decay of correlations is
needed for the convergence to a steady state, without which no steady-state relation makes
sense. If the steady-state �-FR does not hold, equation (55) remains valid and describes a
property of the ensemble ft0 .

Various other relations can now be obtained, like

〈exp(−t�0,t )〉φt0 ,t0+τ ∈(−δ,δ) = 1 (61)

for any odd φ, any δ > 0, any t0 and any τ , which, in the δ → ∞ limit, leads to the so-called
nonequilibrium partition identity (56). Similarly, one obtains the dissipation relation [147]

〈φ〉t =
∫ t

0
ds〈�(0)φ(s)〉, (62)

where 〈·〉t is the average with respect to μt and represents the time-dependent response to the
driving forces.
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That this theory is consistent with irreversible thermodynamics close to equilibrium
is shown, for instance, by its relation with the Green–Kubo formulae [135]. Differently
from [132], which deals with � and with asymptotic times, [135] deals with � and stresses
the role of the physical time scales, as illustrated by a Nosé–Hoover thermostatted system
(equation (15)), with the equilibrium state given by the extended canonical density

fc(�, ξ) = e−β(H0+Qξ 2/2)∫
dξ d� e−β(H0+Qξ 2/2)

(63)

with Q = 2K0θ and internal energy H0 [15]. In the case that Fext
i = ciFe and

J =∑N
i=1 ci(dqi/dt), one has ξ = − 1

2K

[ dH0
dt

+ J · FeV
]

and � = ∇� · ( d�
dt

)
+ ∂ξ

( dξ

dt

) = dNξ ,
where d is the spatial dimension. Therefore, � and its fluctuations are not directly related to
the dissipation rate � = J · FeV /2K , while its average is, because 〈H0〉 = 0. Also, one has

fc(ξ) ≡
∫

d� fc(�, ξ) =
√

βQ

2π
exp[−βQξ 2/2], (64)

and the distribution of ξ 0,t is Gaussian in equilibrium, with variance proportional to that of the
average internal energy

h0,t ≡ 1

t

∫ t

0
Ḣ0 dτ.

Thus, near equilibrium, it can be assumed to remain Gaussian about its mean, for large t, as a
consequence of the central limit theorem (CLT). To use the �-FR together with the CLT, the
values A and −A of the random variable ξ 0,t must be a small number of standard deviations
away from 〈�〉 = 〈J〉 · FeV /2K , where K is the kinetic energy. However, as explained in
[135, 142, 144] and briefly recalled in section 5.1.2, the distribution of dNξ 0,t verifies the
�-FR only for times t sufficiently large that the standard deviation of the random variable h0,t

is negligible with respect to that of �0,t , σ�0,t
say. Because the variance of the average current

obeys tσ 2
J 0,t

(Fe) = 2L(Fe)kBT

V
+ O

(F 2
e

tN

)
, [121], that of �0,t obeys

tσ 2
�0,t

(Fe) =
(

FeV

2K

)2 [2L(Fe)kBT

V
+ O

(
F 2

e

tN

)]
, (65)

where

L(Fe) = βV

∫ ∞

0
dt〈(J (t) − 〈J 〉)(J (0) − 〈J 〉)〉

and L(0) = limFe→0 L(Fe) is the associated linear transport coefficient. As the standard
deviation of the average current decreases when t grows at fixed Fe, while it tends to a
positive constant, when Fe decreases at fixed t, the standard deviation of �0,t tends to zero
when Fe → 0 at fixed t. Differently, the variance of h0,t tends to a constant when Fe tends
to zero at fixed t. Therefore, the smaller the Fe the longer the time t needed for σ�0,t

to

dominate over the variance of h0,t , and this time grows without bounds when Fe tends to zero.
Assume for simplicity that the variations of these standard deviations are monotonic when
either Fe or t varies and the other variable is fixed. Then, given Fe and A, there is tσ (Fe, A)

such that the standard deviation of �0,t is sufficiently large that A and −A are within a few
standard deviations from the mean only if t < tσ (Fe, A). At the same time, let tδ(Fe, A) be
sufficiently large that the steady-state �-FR applies to the values A and −A, with accuracy δ.
To derive the Green–Kubo relations from the �-FR, it is necessary (but not sufficient, [135])
that tδ(Fe, A) < t < tσ (Fe, A). But this does not happen if tδ(Fe, A) grows too fast with
decreasing Fe, which makes problematic the derivation of the Green–Kubo formula from the
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�-FR for systems with singular �, because of the diverging times for the verification of their
�-FR.

Differently, the Green–Kubo relation is conveniently derived from the �-FR. Indeed, the
corresponding convergence times are material properties which do not diverge when Fe tends
to zero, they simply tend to their equilibrium value, which amounts to several Maxwell times.
Furthermore, equating equation (33) and (34) in [135], one obtains βV Fe = 〈J 〉/tσ 2

J 0,t
. Then,

the fact that � = βV FeJ implies βV Fe = 2〈�〉/tσJ 0,t
βV Fe, from which one obtains

〈�〉 = t

2
σ 2

�0,t
or L(0) = lim

Fe→0

〈J 〉
Fe

= βV

∫ ∞

0
ds〈J (0)J (s)〉 (66)

for t of the order of the Maxwell time, where the first equality is due to the validity of the �-FR
and the second to (65). Observing that � is the observable of interest, the proper Green–Kubo
formula has been recovered.

5.1.4. Relaxation to the equilibrium state. One recent result, based on the Evans–Searles
approach to the transient fluctuation relation and the dissipation theorem, concerns a first-
principles proof of convergence to a steady state or to the microcanonical distribution
[148, 149]. The authors show, under very general conditions, that initial distributions will
relax (not necessarily monotonically) to the canonical distribution for a system in thermal
contact with its environment.

The system considered in [148] is a closed system of particles surrounded by a heat
bath. Particles away from the extremities of the system obey the usual Hamiltonian dynamics,
whereas particles near the boundary come into contact with the heat bath and are acted upon by
a thermostat. In this fashion, the dynamics replicates the influence of an external heat bath on
a closed but not energetically isolated system of particles—a common choice for motivating
derivations of the canonical distribution. A Nosé–Hoover thermostat was chosen, although
the nature of the thermostat was not expected to influence the conclusions of [148].

By invoking the transient �-FR (equation (49)), the authors show that any initial phase
space distribution f (�, t) (required only to be time-even, i.e. having an even distribution in
the momenta, as is usual for molecular systems) evolves under the system dynamics as

f (�, t) =
[

exp
∫ 0

−t

ds �(Ss�)

]
f (�, 0). (67)

Only those distributions that are uniformly dissipationless (�(�) ≡ 0) will be time-
independent (f (�, t) ≡ f (�)). Such dissipationless, time-independent distributions are
none other than the equilibrium distributions. The authors of [148] show that the
canonical distribution11 is the unique distribution that is uniformly dissipationless under
these dynamics—for any other time-even distribution, �(�) �≡ 0. Most importantly, they
demonstrate via the transient �-FR that the average dissipation for any initial distribution
must be non-negative, and can only be zero for the equilibrium, canonical distribution.
Consequently, any initial (time-even) distribution will converge to the canonical distribution on
average, although the monotonicity of this convergence is only guaranteed for certain classes
of initial distributions. Monotonic relaxation towards equilibrium is not generally observed in
real systems, however, and the authors of [148] thus note that their relaxation theorem ‘allows
for much more complex dynamical behaviour as seen experimentally’ than earlier results such
as Boltzmann’s H-theorem.

11 Subject to a conservation of momentum constraint in each Cartesian direction.
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5.2. Extensions of Onsager–Machlup theory and deterministic thermostats

Various attempts have been made to extend Onsager–Machlup theory [150, 151] to the large
fluctuations of physical systems in nonequilibrium steady states [152]. Among them, the work
by Jona-Lasinio and collaborators [153–155] is particularly relevant to our discussion. Their
approach generalizes those of Derrida et al [152], and in addition it leads to an independent
derivation of the FR. The theory of [153–155] begins from the assumption that a hydrodynamic-
like description of the system at hand is possible: hence, physically, it can be applied as far
from equilibrium as the validity of the local thermodynamic equilibrium allows12.

The theory leads to the conclusion that the nonequilibrium entropy functional, which
generalizes the Onsager–Machlup entropy to extended systems, is a non-local functional
of the thermodynamic variables, and hence that correlations are present over macroscopic
scales. This result was observed experimentally in nonequilibrium systems in the 1970s
(see [156] for a review on the subject): mathematically, it is expressed for toy models such
as the open symmetric simple exclusion process by the fact that the corresponding large
deviation functional is given by an integral over all points of the system (cf equation (2.2) of
[152]). As an illustration, consider stochastic models of interacting particles, whose number
is locally conserved, in contact with particle reservoirs. Assume that these systems admit the
hydrodynamic description

∂t� = ∇ · [ 1
2D(�)∇�

] ≡ D(�), � = �(x, t), (68)

where � is the vector of macroscopic observables, x is the macroscopic space variable, t is the
macroscopic time, D is the diffusion matrix.

The mathematical theory is necessarily developed for very idealized models, such as the
simple exclusion or the zero range stochastic processes13. Nevertheless, the assumptions under
which the theory holds are thought to be valid much more generally than in these cases, and
are the following.

Assumptions

(1) The mesoscopic evolution is given by a Markov process Xt, which represents the
configuration of the system at time t. The nonequilibrium steady state is described
by a probability measure Prob over the trajectories of Xt.

(2) The macroscopic description is given in terms of fields � which constitute the local
thermodynamic variables, whose evolution is described by (68), which has a unique
stationary solution �̃, under the given nonequilibrium boundary conditions.

(3) Denoting by I the time inversion operator defined by IXt = X−t , the probability measure
Prob∗, describing the evolution of the time-reversed process X∗

t , and Prob are related by

Prob∗(X∗
t = φt , t ∈ [t1, t2]) = Prob(Xt = φ−t , t ∈ [−t2,−t1]). (69)

Moreover, if L is the generator of Xt, the adjoint dynamics is generated by the adjoint (with
respect to the invariant measure μ) operator L∗, which admits the adjoint hydrodynamic
description

∂t� = D∗(�). (70)

12 This, of course, includes a very wide range of phenomena, well beyond the linear regime, which has quite a wide
applicability by itself.
13 These models are usually one-dimensional. Their hydrodynamic limit consists of a scaling of the microscopic
space and time variables, τ and r, with the macroscopic space and time variables given by t = τ/N2 and x = r/N ,
and the number of particles per unit length N tending to infinity.
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(4) The measure Prob admits a large deviation principle describing the fluctuations of �, i.e.
the probability for a large number N of particles that the evolution of the random variable
�N deviates from the solution of (68), to follow a given path �̂(t), in the interval [ti , tf ],
goes like

Prob(�N(XN2t ) ∼ �̂(t), [ti , tf ]) ≈ e−Nd [S(�̂(ti )+J[ti ,tf ](�̂)], (71)

where d is the spatial dimension, S(�̂(ti)) is the entropy cost to produce �̂(ti) and J is the
extra cost required to follow the given path (taking S(�̃) = 0, J vanishes at � = �̃).

This machinery leads to a number of interesting results, among which the generalization
of the Onsager–Machlup theory and the introduction of the ‘adjoint hydrodynamic’
equation (70), for the spontaneous fluctuations around nonequilibrium steady states. Assuming
that D can be decomposed as

D(�) = 1

2
∇ ·
(

χ(�)∇ δS
δ�

)
+ A, (72)

where A is a vector field orthogonal to the thermodynamic force δS/δ� (the functional
derivative of the entropy with respect to the state), a temporal asymmetry arises in the
fluctuation–relaxation paths. Indeed, a spontaneous fluctuation out of a nonequilibrium steady
state follows a trajectory which is the time reversal of the relaxation path, according to the
adjoint hydrodynamics, i.e. it solves

∂t� = −D∗(�) = −D(�) + 2A, (73)

which is not merely the time reversal of the hydrodynamic equation. Being orthogonal to the
thermodynamic force, the term that breaks the time symmetry, A, is not the one that contributes
to the entropy production. Note that equation (70) describes the adjoint hydrodynamics, while
equation (73) refers to the evolution of spontaneous fluctuations.

The question arises as to which aspects of the large deviation theory described above
may be verified experimentally or numerically tested in different models, particularly in
deterministic chaotic systems. As observed in subsection 4.6, a direct comparison between
the predictions of deterministic and stochastic models may however be problematic, although
desired [157]. Therefore, in [111, 112, 158, 159] tests of the prediction of the temporal
asymmetries of fluctuations are attempted. In [158] the fluctuations of the current of the
nonequilibrium Lorentz gas are considered for large numbers of noninteracting particles,
and they have been found to be symmetric in time. As explained in [112], this is due to
the lack of interactions among the particles, and hence to the lack of correlations among
them, which is more clearly manifested in the large N limit. In [111, 112, 159, 160], it is
then argued that sufficiently chaotic systems of interacting particles should typically have
asymmetric fluctuation paths, as long as particle correlations do not identically vanish. The
role of correlations has been extensively investigated in [160].

5.3. Nonequilibrium entropy

Far from equilibrium the concept of entropy fades, but near equilibrium it does make sense;
hence, one may ask whether the difficulty of the divergence of SG for the NEMD systems,
mentioned at the beginning of this section, could be overcome. The paper [161] has been
intended to offer a possible solution, extending the ideas of [15, 162, 163].

Although there seems to be no smooth transition between the regularity of the equilibrium
distributions and the singularity of the nonequilirium ones, no matter how small the driving
might be, for molecular dynamics models, numerous indicators of the state of the system
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Figure 3. Representation of the phase space distribution, for the nonequilibrium Lorentz gas, in
the Birkhoff coordinates. At equilibrium (E = 0) the distribution is uniform; for E > 0 it is
fractal, but the fractality is not apparent to the eye, unless E is sufficiently large. The left panel
corresponds to E = (0.1, 0); the right panel corresponds to E = (1, 0).

do not lose their meaning in the nonequilibrium steady states, and gradually shift from their
equilibrium values, varying with the driving forces.

For instance, consider the periodic nonequilibrium Lorentz gas, whose pointlike particles
obey

q̇ = p; ṗ = E − p · E
p2

p (74)

and suffer from elastic collisions with scatterers, placed on a triangular lattice [164]. As E → 0,
the equations of motion reduce to the equilibrium form, E = 0 implies zero current and small
E implies a small current [165]. Of course, the current alone affords only a very coarse
description of the state. But other observables which do not explicitly depend on the details of
the phase space probability distribution (unlike SG) behave the same. Indeed, the distribution
itself does not seem to undergo the abrupt change which we have described, as figure 3
indicates. There, the distribution at E = (0.1, 0) is practically uniform, indistinguishable to
the eye from the equilibrium distribution. This is despite 0.1 not being a particularly small
field, while 1 is definitely large (the linear regime should not extend beyond |E| < 10−6 [88]).
As discussed in [161], these are not numerical artefacts and are consistent with other works
on N particle systems, such as [131].

Therefore, while SG equals the ‘entropy’ at null E, it does not even exist at E = (ε, 0), for
arbitrarily small ε. The problem rests with the fact that SG is defined as the mean of the log of
the phase space probability distribution, which is a microscopic property of the dynamics and
not a thermodynamic, observable, quantity. The attempt in [161] to overcome this difficulty
relies on the possibility of expressing SG in terms of physically relevant properties. The
perspective is that of systems of many identical interacting particles, i.e. the perspective of the
partial n-body distributions fn, n < N adopted by H S Green’s for dense liquids at equilibrium
[162, 163]. First of all, the z-functions are introduced as follows:

ln f1(x1) ≡ z1(x1)

ln f2(x1, x2) ≡ z2(x1, x2) + z1(x1) + z1(x2)

ln f3(x1, x2, x3) ≡ z3(x1, x2, x3) + z2(x1, x2) + z2(x2, x3) + z2(x3, x1) +
3∑

i=1

z1(xi)

. . .
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so that the Gibbs entropy can be expressed as

SG = −NkB

{∫
dx1

1!
f1z1 +

∫
dx1 dx2

2!
f2z2 + · · ·

}
.

Here f 1 gives the density of particles, f 2 is related to the radial distribution function, which
can be measured from experiment (e.g. via x-ray scattering). It is known that equilibrium
properties such as energy, pressure, specific heat and temperature are obtained to a good
degree of accuracy expanding the equilibrium probability density f only up to the terms that
contain f 1 and f 2 [15, 166].

Away from equilibrium, the full phase space distribution f = fN is singular, but fn with
n � N is expected to be regular (if particles interact), because fn is a projection on a much
lower dimensional phase space of the full fN. This common-sense expectation is not guaranteed
from a rigorous mathematical point of view: but it agrees, for example, with the results for f 2

of Evans and Morriss, for 32 soft discs at high shear rates [15], as well as for results obtained
for lattices of coupled maps [167].

Furthermore, close to equilibrium we expect the various observables to differ little from
their equilibrium values; hence, we expect the above series to converge quite rapidly, even if
not necessarily as rapidly as in equilibrium. Considering that tiny dimensional reduction (e.g.
of order O(1) in 1023) is expected for large drivings for many particle systems [131], it seems
plausible that the expansion expressing SG in terms of partial distributions, truncated before
the singularities are manifested, should work. This argument is substantiated by an accurate
analysis of the behaviour of the very singular Lorentz gas [161].

Therefore, for large N particle systems of physical interest, one can make the following.

Assumption. Even for non-vanishing drivings, partial distributions are regular, i.e. the
functions fn, zn are integrable functions of phase, up to some nc such that 1 � nc � N

And, inspired by [131], one may introduce the

Definition. For (interacting) N-particle systems, the Green’s dimension NG is defined by
NG = 2dmG, if it exists, where mG is defined by

lim
t→∞ |Sm(t)| < ∞,m � mG

lim
t→∞ |Sm(t)| = ∞,m > mG

⎫⎬
⎭ Sm =

∫
dx1 · · · dxm

m!
fmzm.

With the usual interpretation of the Kaplan–Yorke dimension DKY, according to which volumes
of dimension lower than DKY expand, on average, while volumes of higher dimension contract,
on average, NG is meant to exploit the possibility that partial probability distributions of
dimension smaller than DKY should remain regular, while only those of higher dimension
should be singular. As N grows, the Lyapunov spectrum should tend towards a continuous
distribution, and there should then be volumes of integer dimension which neither expand nor
contract on average. Then the following seems plausible.

Conjecture. NG/DKY → 1 as N → ∞

This may be combined with the following.

Assumption. For small driving E and large N, |Sm(0) − Sm(E)| is small if m � mG(E).
Moreover, if |S(0) − [S1(0) + · · · + Sm(0)]| < δ, there is M, m � M � mG(E), such that

|S(E) − [S1(E) + · · · + SM(E)]| < δ.
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In the N → ∞ limit, δ can be made arbitrarily small.

One may indeed expect |Sm(0)−Sm(E)| ∼ O(E2), for small m [131], and for sufficiently small
E that LTE is established. Then, for m of order O(1023), the divergence of the contributions to
the Gibbs entropy should become irrelevant, since they belong to non-observable scales. It is
important to note that this ‘non-observability’ requires both very large N, otherwise LTE cannot
be established, and particle interactions, otherwise fN is merely a product of f 1 distributions;
hence, its projections remain singular if it is already singular.

The physical entropy is now denoted by S, without the subscript G, because SG does not
represent the physical entropy away from equilibrium. One should also note that the definition
of S as a truncated series in the partial distributions fn is not peculiar of the NEMD models,
for which it has been conceived. Indeed, as the fn can be considered in different contexts and
approaches, the proposal may apply much more generally.

6. Conclusion

Woodcock’s efforts in the early 1970s to generate a canonical ensemble by altering the
dynamics of a constant energy simulation have proven to be the first steps towards a much
more ambitious goal. Thermostats have evolved from these early simple mechanisms into
much more sophisticated forms: partly to maintain particular forms of equilibrium with the
external universe, and partly as a means of dissipating the energy introduced by entropy-
generating force fields in the NEMD technique. This evolution was initially motivated by
a desire to make thermostats and the simulations that use them, more ‘realistic’. But what
exactly does such an objective mean? Partly out of the realization that this question requires
profound consideration, a body of theory has developed alongside the evolution in thermostats
and their related simulation methods.

In this paper we have focused on the nonequilibrium simulation methods and NEMD
in particular. NEMD has proven itself to be an efficient and reliable technique for studying
nonequilibrium transport processes. Clearly, as with any model of a physical system, there are
limits to its suitability as a general model of nonequilibrium behaviour. In its application to
studying nonequilibrium steady states, these limits appear analogous to those of the ensembles
of equilibrium statistical mechanics. Macroscopic properties related to the definition of
the nonequilibrium steady state appear to be reliably reproduced, to the extent that one
can postulate an equivalence principle (again analogous to the equivalence of equilibrium
ensembles).

While conditions for this equivalence to hold have not been definitively elucidated,
the validity of local thermodynamic equilibrium appears to be a good first approximation.
Certainly, there is good evidence to suggest that the presence of LTE implies equivalent
behaviour, while its absence implies non-thermodynamic behaviour. Coincidently, this
condition also appears to be a requirement for the association of thermodynamic quantities
with the statistical values obtained from the theory—without LTE, phase space expansion rates
may in no circumstance be associated with the rates of entropy production. Again, this result
is strongly analogous to the equilibrium case.

Under such conditions, then, the thermostat formalism provides a theoretical framework
for describing the key thermodynamic properties of the nonequilibrium steady state and has
an important role to play in the development of current nonequilibrium theories. Recent years
have seen important developments in the theories describing the fluctuations of nonequilibrium
systems, based around notions of entropy and changes in phase space volume. It is usually
constructive to review the context in which such development takes place: this additional

36



J. Phys. A: Math. Theor. 43 (2010) 133001 Topical Review

perspective can often highlight parallels with other topics that may provide useful insight. In
the current case, there is a clear analogy between diverse approaches that have been taken in
the study of nonequilibrium fluctuations, and the approaches taken to address the equilibrium
requirement of ergodicity.

On the one hand is a physically motivated approach that requires the properties of the
system in question to obey certain mathematical criteria (such as decay of autocorrelations).
These properties are typical of thermodynamic systems: however, a broader understanding
of what systems and properties meet these criteria is far from trivial. On the other hand is
a mathematically motivated approach that presents a set of mathematical conditions under
which a nonequilibrium system’s fluctuations match those observed from (computational)
experiment. This elegant approach allows valuable insight into the nature of nonequilibrium
fluctuations: however, many physical systems that obey the fluctuation relations are known
not to meet these mathematical conditions.

At the beginning of this paper, we identified a dichotomy between the mathematical
notion of ergodicity and the physically motivated approach of Khinchin. It is apparent that
there is more than a passing similarity between this dichotomy and that of the nonequilibrium
fluctuation theorems. Interestingly, the ergodic dichotomy remains unresolved. While
ergodicity seems an unnecessarily strong condition, whose benefits cannot be reaped on the
timescales over which we observe thermodynamic systems, the bottom line is that it remains a
linchpin of modern statistical mechanics because, as a model, it proves to be physically suitable.
The more physically realistic model instigated by Khinchin almost certainly provides a more
likely explanation for ergodicity as we observe it, but is at present too limited in scope to support
a comprehensive statistical mechanical theory. Neither situation is entirely satisfactory—and
yet we would be much poorer without either approach. On this final point, the analogy with
the nonequilibrium theories is excellent.
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